
With a Few Square Roots,�antum Computing Is as Easy as

Pi

JACQUES CARETTE,McMaster University, Canada

CHRIS HEUNEN, University of Edinburgh, UK

ROBIN KAARSGAARD, University of Southern Denmark, Denmark

AMR SABRY, Indiana University, USA

Rig groupoids provide a semantic model of Π, a universal classical reversible programming language over

�nite types. We prove that extending rig groupoids with just two maps and three equations about them results

in a model of quantum computing that is computationally universal and equationally sound and complete

for a variety of gate sets. The �rst map corresponds to an 8th root of the identity morphism on the unit 1.

The second map corresponds to a square root of the symmetry on 1 + 1. As square roots are generally not

unique and can sometimes even be trivial, the maps are constrained to satisfy a nondegeneracy axiom, which

we relate to the Euler decomposition of the Hadamard gate. The semantic construction is turned into an

extension of Π, called
√
Π, that is a computationally universal quantum programming language equipped with

an equational theory that is sound and complete with respect to the Cli�ord gate set, the standard gate set of

Cli�ord+T restricted to ≤ 2 qubits, and the computationally universal Gaussian Cli�ord+T gate set.

CCS Concepts: • Theory of computation→ Categorical semantics; Quantum computation theory; •

Software and its engineering→ General programming languages.

Additional Key Words and Phrases: quantum programming language, unitary quantum computing, reversible

computing, equational theory, rig category

ACM Reference Format:

Jacques Carette, Chris Heunen, Robin Kaarsgaard, and Amr Sabry. 2024. With a Few Square Roots, Quantum

Computing Is as Easy as Pi. Proc. ACM Program. Lang. 8, POPL, Article 19 (January 2024), 29 pages. https:

//doi.org/10.1145/3632861

1 INTRODUCTION

Just like in the classical case, quantum computing can be built up from booleans and associated
operations. The quantum version of boolean negation is the X gate de�ned by X |0⟩ = |1⟩ and
X |1⟩ = |0⟩. The quantum circuit model also includes a gate

√
X (also known as the V gate) that is

the “square root of X.” Informally
√
X performs half of the action of the X gate, i.e., if we imagine a

trajectory from |0⟩ to |1⟩ and another trajectory from |1⟩ to |0⟩, then one application of
√
X follows

half the relevant trajectory. The standard approach to model this behaviour is to explicitly express
the intermediate midpoints as complex vectors [Hayes 1995; Satoh et al. 2022]:

√
X |0⟩ = 1+8

2
|0⟩ + 1−8

2
|1⟩

√
X |1⟩ = 1−8

2
|0⟩ + 1+8

2
|1⟩

Authors’ addresses: Jacques Carette, McMaster University, Canada, carette@mcmaster.ca; Chris Heunen, University of

Edinburgh, UK, Chris.Heunen@ed.ac.uk; Robin Kaarsgaard, Centre for Quantum Mathematics, University of Southern

Denmark, Denmark, kaarsgaard@imada.sdu.dk; Amr Sabry, Indiana University, USA, sabry@indiana.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART19

https://doi.org/10.1145/3632861

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

https://creativecommons.org/licenses/by-nd/4.0/
HTTPS://ORCID.ORG/0000-0001-8993-9804
HTTPS://ORCID.ORG/0000-0001-7393-2640
HTTPS://ORCID.ORG/0000-0002-7672-799X
HTTPS://ORCID.ORG/0000-0002-1025-7331
https://doi.org/10.1145/3632861
https://doi.org/10.1145/3632861
https://orcid.org/0000-0001-8993-9804
https://orcid.org/0000-0001-7393-2640
https://orcid.org/0000-0002-7672-799X
https://orcid.org/0000-0002-1025-7331
https://doi.org/10.1145/3632861

19:2 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

One can verify that:
√
X(

√
X |0⟩) =

√
X
(
1+8
2
|0⟩ + 1−8

2
|1⟩

)
=

1+8
2

√
X |0⟩ + 1−8

2

√
X |1⟩

=
1+8
2

(
1+8
2
|0⟩ + 1−8

2
|1⟩

)
+ 1−8

2

(
1−8
2

|0⟩ + 1+8
2
|1⟩

)
=

8
2
|0⟩ + 1

2
|1⟩ − 8

2
|0⟩ + 1

2
|1⟩

= |1⟩

and similarly that
√
X(

√
X |1⟩) = |0⟩. As is evident in this tiny example, reasoning this way about

quantum programs is overwhelmed by complex numbers and linear algebra.
Our �rst insight is that we do not need to explicitly represent the intermediate points. All we need

to know about them are two things: (i) they exist, and (ii) they satisfy one critical axiom. Technically,
we demonstrate that the following categorical model is, not only computationally universal for
quantum computing, but also sound and complete for several modes of unitary quantum computing.

De�nition of the QuantumModel. The model consists of a rig groupoid (C, ⊗, ⊕,$, �) equipped
with maps l : � → � and V : � ⊕ � → � ⊕ � satisfying the equations:

(E1) l8
= id (E2) V2

= f⊕ (E3) V ◦ S ◦ V = l2 • S ◦ V ◦ S
where ◦ is sequential composition, • is scalar multiplication (cf. Def. 5.1), f⊕ is the symmetry on
� ⊕ � , exponents are iterated sequential compositions, and S : � ⊕ � → � ⊕ � is de�ned as S = id⊕l2.

In the de�nition, the rig groupoid C models an underlying reversible classical programming
language. By convention, booleans in this language are represented as values of type � ⊕ � with one
injection representing false, the other representing true, and the symmetry f⊕ : � ⊕ � → � ⊕ �

Fig. 1. -/- and /-/ rotations

with all angles at c/2.

representing boolean negation. The quantum model has two
additional morphisms l and V. The map l is a primitive 8th root
of the identity; its semantics is partially speci�ed by (E1). The
map V is the square root of boolean negation; its semantics is
partially speci�ed by (E2). So far, we have postulated the existence
of square roots but without needing to write any actual complex
numbers: they are just morphisms partially speci�ed by (E1) and
(E2). At this point, it would be consistent to choosel = id but this
would not lead to a universal quantummodel. To understand how
(E3) selects just the “right” square root, we recall that the Euler
decomposition expresses any 1-qubit unitary gate as a product
of a global phase and three rotations along two �xed orthogonal
axes, and that S and V correspond to rotations in complementary
bases (i.e., along orthogonal axes). In that light, axiom (E3) picks
the / -basis and the - -basis as the two axes and enforces that
decompositions along /-/ or -/- are equal (up to a physically
unimportant global phase). This ensures that it is immaterial
which of S and V rotations is mapped to the / - or - -basis and
additionally ensures that the angle of the S rotation (induced by
the l2 in the de�nition of S) is c/2. As a helpful illustration, Fig. 1 shows that, with the standard
choice for the computational basis in the / -direction, starting from an arbitrary state (near the
North pole in the �gure), a sequence of c/2--/- rotations (top) is equivalent to a sequence of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:3

c/2-/-/ rotations (bottom). Were the angle of the / -rotation di�erent due to a di�erent choice
of l , the two sequences of rotations would not be equivalent.
This approach reduces reasoning about quantum programs to manipulating the coherence

conditions of rig categories [Laplaza 1972] extended with the axioms (E1), (E2), and (E3). The

calculation that
√
X ◦

√
X = - follows by (E2). Many quantum equivalences follow similarly. For

example, the proof that S ◦ S is equivalent to the Z gate de�ned as id ⊕ l4 follows by:

S ◦ S = (id ⊕ l2) ◦ (id ⊕ l2) = (id ◦ id) ⊕ (l2 ◦ l2) = id ⊕ l4
= Z

The proof uses just the coherence conditions of rig categories and is, along with many other results,
formalised in an extension of the agda-categories library [Hu and Carette 2021] included in the
supplementary material1.

The equational theory extracted from the semantic model is sound and complete with respect to
arbitrary Cli�ord circuits, Cli�ord+T circuits of at most 2 qubits, and arbitrary Gaussian Cli�ord+T

circuits. These completeness theorems, Thms. 6.5, 6.8, and 6.14, form our main technical results:

• Completeness for Arbitrary Cli�ord circuits (cf. Thm 6.5). Circuits built from Cli�ord gates
are important in quantum computing for two related reasons. First, Cli�ord gates are exactly
those quantum gates that normalise the Pauli matrices, which provide a linear-algebraic basis
for a single qubit. Cli�ord gates include, and are in fact generated by, H, S, and CX. Second,
although Cli�ord circuits may “look quantum,” they are in fact e�ciently simulatable by a
probabilistic classical computation, by the Gottesman-Knill theorem [Gottesman 1999].

• Completeness for Cli�ord+T circuits of at most 2 qubits (cf. Thm 6.8). To move beyond classical
probabilistic machines in computational power, other quantum gates need to be considered.
One popular choice is to extend the Cli�ord set with the T gate. The restriction to ≤ 2 qubits
is a stepping stone to the next result.

• Completeness for Arbitrary Gaussian Cli�ord+T circuits (cf. Thm 6.10). Another universal
quantum gate set is given by {X,CX,CCX, S,K} [Amy et al. 2020; Bian and Selinger 2021].
Such circuits can be characterised algebraically as those unitary matrices with entries in the
ring Z[1

2
, 8] of Gaussian dyadic rationals [Amy et al. 2020].

To summarise, we have developed a vastly simpli�ed axiomatic treatment of quantum computation
using the coherence conditions of rig categories extended with morphisms modeling roots of the
identity and a square root of the symmetry f⊕ : � ⊕ � → � ⊕ � .

This formalism provides, to our knowledge, the �rst sound and complete equational theory for
a computationally universal unitary quantum programming language. As this approach avoids
imposing speci�c assumptions about gate sets or implementation details, it could serve to bridge
the gap between quantum programming languages and the various gate sets used in the quantum
circuit model. Further, it could serve as a "theory of equational theories" capable of describing and
analyzing various modes of quantum computing, such as di�erent gate sets, without preference to
any speci�c approach. While this paper primarily focuses on qubit circuits due to the abundance
of �nite presentation results, it does not re�ect an inherent limitation or assumption within the
formalism. In fact, we propose that this formalism could be used equally well to represent and
analyse circuits from qudit gate sets (e.g., qutrit Cli�ord+T [Yeh and van de Wetering 2022]).

Related work. Our result is distinguished from other calculi based on ZX [Coecke and Duncan
2011], notably ZH [Backens and Kissinger 2019] and PBS/LOv [Clément et al. 2023] in two fun-
damental aspects. First, ZX and ZH describe quantum theory, not quantum computation. That is,
they are complete for all linear maps, not for unitary ones only. Indeed, one of the major problems

1Available at https://github.com/JacquesCarette/SqrtPi.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

https://github.com/JacquesCarette/SqrtPi

19:4 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

associated with the ZX calculus is circuit extraction: to ensure that rewriting a quantum circuit
ends up with a quantum circuit again. This problem is #P-hard [de Beaudrap et al. 2022]. Second,
these calculi do not have universal equational theories, as some of the axiom schemas involve
existential quanti�ers, resulting from the Euler decomposition, that cannot be eliminated [Duncan
and Perdrix 2009]. The theory presented here builds on a di�erent line of research that led to
advances in reversible quantum computing (e.g., [Choudhury et al. 2022; Glück et al. 2019; He-
unen and Kaarsgaard 2022; Heunen et al. 2018]) and equational theories of quantum circuits and
unitaries [Bian and Selinger 2021, 2022; Selinger 2015] (see also [Thomsen et al. 2015]) arising
from number-theoretic insights (e.g., [Amy et al. 2020; Giles and Selinger 2013]). Our resulting
theory is sound, complete and universal, never considers more general linear maps (unlike ZH/ZX),
and relies only on universally quanti�ed equations (unlike PBS/LOv). Our work complements the
work of Staton [2015], which provides a sound and complete equational theory of state preparation
and measurement (which we do not consider here), but does not consider an equational theory of
unitaries.

Outline. We assume familiarity with category theory (in particular rig categories, monoidal
categories, and string diagrams) and with the fundamentals of quantum computing. We provide a
brief review in the next section for the necessary notation and conventions. Sec 3 motivates the
use of combinator-based languages to reason about quantum circuits. Sec. 4 introduces the formal

syntax of the combinator language
√
Π used as a technical device in this paper. Sec. 5 gives the

denotational semantics of
√
Π in extended rig groupoids. Sec. 6 includes the main technical results

that establish soundness and completeness of
√
Π for a variety of gate sets. Sec. 7 describes the

equational theory in action. The concluding section puts the results in a larger context and discusses
their signi�cance. Some of the proofs are relegated to a longer version of the paper [Carette et al.
2023].

2 BACKGROUND

We recall here some basics of unitary quantum computing and rig categories.

2.1 Unitary �antum Computing

For more details about this topic we refer to textbooks such as [Nielsen and Chuang 2010; Yanofsky
and Mannucci 2008].

Closed quantum systems are modelled mathematically by complex Hilbert spaces � , which are
complex vector spaces with an inner product ⟨−|−⟩ that are complete as metric spaces (with respect
to the metric induced by the inner product). For example, a one-qubit system is represented by C2,
with vectors |0⟩ = (10) and |1⟩ = (01) representing the two classical states. Hilbert spaces � and
can be combined to form new ones using the direct sum � ⊕ and tensor product � ⊗ : these
can be seen as analogues of sum types and product types in the sense that C= ⊕ C< � C=+< and
C= ⊗ C< � C=< .
Every linear map 5 on a Hilbert space is associated with a (Hermitian) adjoint 5 † satisfying

⟨5 q |k ⟩ =
〈
q
��5 †k 〉. The discrete time evolution of closed quantum systems is described by unitaries,

which are linear isomorphisms* satisfying* −1
= * †. Some important examples of unitaries on

C2 include the Hadamard gate H, the X gate (the quantum analogue of the classical not gate), and
the phase gates Z, S, and T, given by the matrices:

H =
1√
2

(
1 1
1 −1

)
X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
S =

(
1 0
0 8

)
T =

(
1 0

0
1+8√
2

)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:5

Any unitary* acting on � can be extended to a controlled variant acting on C2 ⊗ � , given in
matrix form by the block diagonal matrix

(
� 0
0 *

)
where � is the identity on � . This controlled-* will

apply* to � only if the given qubit was in the state |1⟩; otherwise it will do nothing. For example,
the controlled-- gate CX is given by

CX =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
Similar to classical hardware description, low-level quantum computations can be described at the
level of qubits and gates using quantum circuits, which we describe in further detail in Sec. 3, save
for one crucial de�nition concerning when a quantum gate set can be said to be universal:

De�nition 2.1 (Computational universality [Aharonov 2003]). A set of quantum gates � is said to
be strictly universal if there exists a constant =0 such that for any = ≥ =0, the subgroup generated by
� is dense in SU(2=). The set � is said to be computationally universal if it can be used to simulate
to within n error any quantum circuit which uses = qubits and C gates from a strictly universal set
with only polylogarithmic overhead in (=, C, 1/n).

2.2 Rig Categories

We refer to [Awodey 2010; Heunen and Vicary 2019] for more on (monoidal) categories, and to
[Johnson and Yau 2021] for a recent textbook on rig categories and their applications.
A category C is an algebraic structure capturing typed processes: a category consists of some

types (objects)-,., / and some processes (morphisms) 5 , 6, ℎ such that each process 5 is assigned an
input type (domain) - and an output type (codomain) . , written 5 : - → . . Processes 5 : - → .

and 6 : . → / can be composed to form a new process 6 ◦ 5 : - → / in such a way that
composition is associative and unital (i.e., every object- is associated with an identity id- : - → -

such that 5 ◦ id- = 5 = id. ◦ 5 for all 5 : - → .). Thus, categories describe theories of processes
that can be composed in sequence: if a morphism 5 has an inverse 5 −1 such that 5 ◦ 5 −1 = id and
5 −1 ◦ 5 = id, we say that 5 is an isomorphism. A category which contains only isomorphisms is
called a groupoid.
A symmetric monoidal category (C, ⊗, �) is a category that also permits parallel composition of

objects and morphisms: whenever one has objects - and . , there exists an object - ⊗ . ; similarly,
morphisms 5 : - → . and 6 : / →, give rise to 5 ⊗ 6 : - ⊗ / → . ⊗, . Further, we require
that there is a distinguished object � and families of isomorphisms (indexed by objects -,., /)
_⊗ : � ⊗- → - and d⊗ : � ⊗- → - (the unitors); U⊗ : (- ⊗.) ⊗/ → - ⊗ (. ⊗/) (the associator);
and f⊗ : - ⊗ . → . ⊗ - (the symmetry), satisfying some equations (see, e.g., [Heunen and Vicary
2019, Chapter 1]).

A rig category (or bimonoidal category) (C, ⊗, ⊕, � ,$) is a category which is symmetric monoidal
in two di�erent ways, such that one monoidal structure distributes over the other. Precisely, it is a
category such that (C, ⊗, �) and (C, ⊕,$) are both symmetric monoidal categories, and there are
families of isomorphisms (indexed by objects -,., /) X! : - ⊗ (. ⊕ /) → (- ⊗ .) ⊕ (- ⊗ /) and
X' : (- ⊕ .) ⊗ / → (- ⊗ /) ⊕ (. ⊗ /) (the distributors) and X!0 : $ ⊗- → $ and X'0 : - ⊗$ → $

(the annihilators), subject again to some equations (see [Laplaza 1972]). A rig category which is
simultaneously a groupoid is called a rig groupoid. The category Unitary of �nite-dimensional
Hilbert spaces and unitaries forms a rig groupoid with its tensor product ⊗ and direct sum ⊕.

3 REASONING ABOUT QUANTUM CIRCUITS WITH COMBINATORS

The lingua franca of quantum computing is that of quantum circuits. Like boolean circuits consisting
of bit-carrying wires connecting boolean gates, quantum circuits consist of wires carrying qubits
connecting quantum gates. For example, the circuit in Fig. 2 has 5 controlled unitary gates acting on 3

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:6 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

|@0 ⟩ • • •

|@1 ⟩ • •

|@2 ⟩
√
-

√
-

† √
-

Fig. 2. �antum circuit for CCX.

qubits. In order, the �rst three gates are: controlled-
√
X (aka CSX),

controlled-not (aka CX), and controlled-inverse-
√
X (aka CSXdg).

3.1 Circuits as Matrices

Quantum circuits have a canonical reading as complex matrices.
The quantum gates stand for speci�c unitary matrices which are
combined by matrix multiplication when gates are composed
sequentially, and by tensor product when gates are composed
in parallel. For example, the controlled gates used in the circuit
above denote the following matrices:

CSX =
1
2

(
2 0 0 0
0 2 0 0
0 0 −1+8 −1−8
0 0 −1−8 −1+8

)
CX =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
CSXdg =

1
2

(
2 0 0 0
0 2 0 0
0 0 −1−8 −1+8
0 0 −1+8 −1−8

)

which when all multiplied following the layout of the circuit produce:

©«

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

ª®®®
¬

The reader may recognise the resulting matrix as the denotation of the To�oli (aka CCX) gate [Tof-
foli 1980]. Indeed the equivalence of CCX to the circuit in Fig. 2 is an instance of the Sleator-
Weinfurter [1995] construction. Evidently, one way to establish the equivalence is to reduce both
circuits to a common matrix. If such a low-level algebraic manipulation is undesirable, a high-level,
but informal proof, would proceed by case analysis on the possible values of @0@1:

• if both @0@1 are 0, then no control gate is activated and the circuit behaves like the identity;

• if one of @0@1 is 1 and the other is 0, then both
√
X and its inverse are activated and the circuit

is again equivalent to the identity;

• if both @0@1 are 1, then two instances of
√
X are activated which negates @2.

To summarise, the circuit in Fig. 2 negates @2 exactly when both @0@1 are 1, which is exactly the
behaviour of the To�oli gate. We will formalise this example using our calculus in Sec. 7.

3.2 Circuits as Rig Morphisms

It is relatively easy to �nd some collection of local rewrite rules that are sound for quantum circuits
composed of particular gate sets. It is much harder to �nd a complete collection that guarantee
that any equivalent quantum circuits can be transformed to one another. We solve this problem as
follows. First, we build on the completeness result for classical reversible circuits [Choudhury et al.
2022] by including all the coherence conditions for rig categories as a foundation for reasoning
about the classical subset of gates (e.g., X, CX, CCX, etc.) To reason about the purely quantum gates

(e.g.,
√
X, H, T, etc.) we build on a collection of insights explained below.

The �rst insight is to not worry about gates at all but instead exploit the rig groupoid structure
that provides two constructors ⊕ and ⊗ that behave in a distributive way, like + and × in the
rig of natural numbers. The ⊕ construct, which is not present in formalisms such as the ZX-
calculus [Coecke and Duncan 2011] provides a way to build quantum gates from �rst principles by
exploiting the fact that a qubit is a two-dimensional additive structure 1 ⊕ 1. For example, the rig
structure provides, among others, the natural isomorphisms _⊗ : � ⊗ � → �, f⊕ :� ⊕ � → � ⊕ �,
and X' : (� ⊕ �) ⊗ � → (� ⊕ �) ⊗ (� ⊕ �) which can be used to de�ne gates as follows. First, we

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:7

isolate two patterns Mat and Ctrl to construct simple gates and their controlled versions:

Mat ::= _⊗ ⊕ _⊗ ◦ X' : (� ⊕ �) ⊗ � → � ⊕ �
Ctrl< ::=Mat−1 ◦ (id ⊕<) ◦Mat : (� ⊕ �) ⊗ � → (� ⊕ �) ⊗ �

The de�nition of Ctrl above is parametric in< : � ⊕ � → � ⊕ � , enabling the de�nitions of the
classical gates:

X ::= f⊕ : � ⊕ � → � ⊕ �
CX ::= Ctrl X : (� ⊕ �) ⊗ (� ⊕ �) → (� ⊕ �) ⊗ (� ⊕ �)

CCX ::= Ctrl CX : (� ⊕ �) ⊗ ((� ⊕ �) ⊗ (� ⊕ �)) → (� ⊕ �) ⊗ ((� ⊕ �) ⊗ (� ⊕ �))

These patterns would also provide controlled versions of single qubit quantum gates if we managed
to express them. To that end, we use the insight that, by the Euler decomposition, single qubit
quantum gates can be expressed as a product q · %&% ′, where q is a phase, % and % ′ are rotations
in one basis, and & is a rotation in a complementary basis. Thus, the categorical framework “only”
needs to express phase gates in two complementary bases such as the canonical / and - bases; it
turns out that this is relatively straightforward once the framework includes roots of unity and a
square root of f⊕ . Each root of unity l directly provides phase gate id ⊕ l in the Z-basis; phase
gates in the X-basis are obtained by the change of basis induced by H which itself can be de�ned
using roots of unity and the square root of f⊕ (cf. Fig. 8). The technical challenge is that square
roots are not unique, so for example postulating some V such that V ◦ V = f⊕ is not su�cient to
determine V. Axiom (�3), however, is su�cient to completely determine all the required square
roots. The �nal product is an equational theory that provides (formalisable) proofs for circuit
equivalences that only require a modest extension of conventional categorical reasoning.

4 A UNIVERSAL QUANTUM LANGUAGE:
√
Π

We present the syntax of
√
Π, whose underlying language is the classical reversible language Π

that is universal for reversible computing over �nite types and whose semantics is expressed in the
rig groupoid of �nite sets and bijections [James and Sabry 2012] . After reviewing the design of Π

we introduce the extension
√
Π.

4.1 The Core Language: Π

In reversible boolean circuits, the number of input bits matches the number of output bits. Thus,
a key insight for a programming language of reversible circuits is to ensure that each primitive
operation preserves the number of bits, which is just a natural number. The algebraic structure of
natural numbers as the free commutative semiring (or, commutative rig), with (0, +) for addition,
and (1,×) for multiplication then provides sequential, vertical, and horizontal circuit composition.
Generalising these ideas, a typed programming language for reversible computing should ensure
that every primitive expresses an isomorphism of �nite types, i.e., a permutation.
The syntax of the language Π, shown in Fig. 3, captures this concept. Type expressions 1 are

built from the empty type (0), the unit type (1), the sum type (+), and the product type (×). A
type isomorphism 2 : 11 ↔ 12 models a reversible circuit that permutes the values in 11 and 12.
These type isomorphisms are built from the primitive identities iso and their compositions. The
Π-isomorphisms are not ad hoc: they correspond exactly to the laws of a rig operationalised into
invertible transformations [Carette et al. 2022; Carette and Sabry 2016] which have the types in
Fig. 4. Each line in the top part of the �gure has the pattern 21 : 11 ↔ 12 : 22 where 21 and 22 are
self-duals; 21 has type 11 ↔ 12 and 22 has type 12 ↔ 11.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:8 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

1 ::= 0 | 1 | 1 + 1 | 1 × 1 (value types)

C ::= 1 ↔ 1 (combinator types)

iso ::= id | swap+ | assocr+ | assocl+ | unite+; | uniti+; | absorbl | factorzr (isomorphisms)

| swap× | assocr× | assocl× | unite×; | uniti×; | dist | factor
2 ::= iso | 2 o

9 2 | 2 + 2 | 2 × 2 (combinators)

Fig. 3. The syntax of Π.

id : 1 ↔ 1 : id

swap+ : 11 + 12 ↔ 12 + 11 : swap+

assocr+ : (11 + 12) + 13 ↔ 11 + (12 + 13) : assocl+

unite+; : 0 + 1 ↔ 1 : uniti+;
swap× : 11 × 12 ↔ 12 × 11 : swap×

assocr× : (11 × 12) × 13 ↔ 11 × (12 × 13) : assocl×

unite×; : 1 × 1 ↔ 1 : uniti×;
dist : (11 + 12) × 13 ↔ (11 × 13) + (12 × 13) : factor

absorbl : 1 × 0 ↔ 0 : factorzr

21 : 11 ↔ 12 22 : 12 ↔ 13

21 o
9 22 : 11 ↔ 13

21 : 11 ↔ 13 22 : 12 ↔ 14

21 + 22 : 11 + 12 ↔ 13 + 14
21 : 11 ↔ 13 22 : 12 ↔ 14

21 × 22 : 11 × 12 ↔ 13 × 14

Fig. 4. Types for Π combinators

ctrl 2 = dist o
9 id + (id × 2) o

9 factor

1 : 1 ↔ 1 = id

x : 2 ↔ 2 = swap+

cx : 2 × 2 ↔ 2 × 2 = ctrl swap+

ccx : 2 × 2 × 2 ↔ 2 × 2 × 2 = ctrl cx

Fig. 5. Derived Π constructs.

The instance of id at type 1 ↔ 1 plays an important role as it will induce scalars; it is given the
distinguished name 1 when used as a scalar value. To see how this language expresses reversible
circuits, we �rst de�ne types that describe sequences of booleans (2=). We use the type 2 = 1 + 1 to
represent booleans with the left injection representing false and the right injection representing
true. Boolean negation (the x-gate) is straightforward to de�ne using the primitive combinator
swap+. We can represent =-bit words using an =-ary product of boolean values. To express the
cx- and ccx-gates we need to encode a notion of conditional expression. Such conditionals turn
out to be expressible using the distributivity and factoring identities of rigs as shown in Fig. 5.
An input value of type 2 × 1 is processed by the dist operator, which converts it into a value of
type (1 × 1) + (1 × 1). Only in the right branch, which corresponds to the case when the boolean
is true, is the combinator 2 applied to the value of type 1. The inverse of dist, namely factor is
applied to get the �nal result. Using this conditional, cx is de�ned as ctrl x and the To�oli ccx

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:9

gate is de�ned as ctrl cx. Because Π can express the To�oli gate and can generate ancilla values
of type 1 as needed, it is universal for classical reversible circuits.

Theorem 4.1 (Π Expressivity). Π is universal for classical reversible circuits, i.e., boolean bijections

2= → 2= (for any natural number =).

4.2 Classical Completeness

A crucial fact for the rest of the paper is the existence of an equational theory for Π that is sound
and complete for the permutation semantics. The equations for the theory were collected in a
second level of Π syntax as level-2 combinators [Carette and Sabry 2016]. Each level-2 combinator
is of the form 21 ↔2 22 for appropriate 21 and 22 of the same type 11 ↔ 12 and asserts that 21
and 22 denote the same bijection. For example, among the large number of equations, we have the
following level-2 combinators dealing with associativity:

assoc#l : c1 # (c2 # c3) ↔2 (c1 # c2) # c3
assoc#r : ((c1 # c2) # c3) ↔2 (c1 # (c2 # c3))

assocl+l : ((c1 + (c2 + c3)) # assocl+) ↔2 (assocl+ # ((c1 + c2) + c3))

assocl+r : (assocl+ # ((c1 + c2) + c3)) ↔2 ((c1 + (c2 + c3)) # assocl+)

Theorem 4.2 (Π Full Abstraction and Adeqacy [Choudhury et al. 2022]). The equational

theory of Π expressed using the level-2 combinators ↔2 is sound and complete with respect to its

semantics in the weak symmetric rig groupoid of �nite sets and permutations.

As a consequence, we may use any classical reversible circuit identity (i.e., any identity involving
only rig terms in the category of �nite sets and permutations) without explicit proof, as such a proof
can be reconstructed using the theorem above. In particular, we will freely use the classical identities
below involving various combinations of CX and SWAP gates (which can all be straightforwardly
veri�ed by explicit computation):

• • = • •
(P1)

• •
• • • =

× ×
× • ×

(P2)

× ×
× ×

•
= • • •

• •

(P3)

• • •
• • •

• • •
=

(P4)

• • •
• • •

• • •
=

(P5)

• •
•

=
×
×

(P6)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:10 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

Syntax

iso ::= · · · | v | vi | w | wi (isomorphisms)

Types

v : 2 ↔ 2 : vi

w : 1 ↔ 1 : wi

Equations

(E1) v2 ↔2 x

(E2) w8 ↔2 1

(E3) v o
9 (id +w2) o

9 v ↔2 uniti
×; o

9 w2 × ((id +w2) o
9 v o

9 (id +w2)) o
9 unite×;

Fig. 6. The
√
Π extension of Π.

4.3 Adding Square Roots

The remarkable fact is that all it takes for a programming language to be universal for quantum
computing with a sound and complete equational theory is the modest extension to Π in Fig. 6.

The extension consists of a square root v of x and an 8th root w of the identity combinator 1. To
maintain reversibility, we add not just these square roots but their inverses vi and wi as well. The
semantics of the new combinators is partially speci�ed by Eqs. (E1) and (E2). From these equations
and the original level-2 combinators, we can derive properties of the inverses, e.g.:

x ↔2 v o
9 v (by 2-reversibility)

vi o
9 x o

9 x ↔2 vi o
9 v o

9 v o
9 x (by compatibility)

vi ↔2 v o
9 x (by inverses and unit)

1 ↔2 w8 (by 2-reversibility)
wi o

9 1 ↔2 wi o
9 w8 (by compatibility)

wi ↔2 w7 (by inverses and unit)

As discussed earlier, Eqs. (E1) and (E2) do not completely determine the meaning of the new
combinators, however. In particular, they do not exclude the trivial square root w = 1. To get a
non-trivial semantics, we also impose Eq. (E3).

5 DENOTATIONAL SEMANTICS

By design, Π has a natural model in rig groupoids [Carette and Sabry 2016; Choudhury et al. 2022].
Indeed, every atomic isomorphism of Π corresponds to a coherence isomorphism in a rig category,
while sequencing corresponds to composition, and the two parallel compositions are handled by
the two monoidal structures. Inversion corresponds to the canonical dagger structure of groupoids.
This interpretation is summarised in the top part of Fig. 7.

5.1 Postulating Square Roots

We will postulate the existence of certain square roots to a rig groupoid to obtain models of
√
Π.

Ideally, there would be a universal categorical construction that formally adjoins =th roots of
speci�ed (endo)morphisms to a given (rig) category. The traditional way in commutative algebra to
adjoin a square root of A to a ring ' is to �rst move to the polynomial ring ' [G] in one variable G ,
and then to quotient out the ideal generated by G2 − A to force G2 = A . This method is fraught with
problems in the categorical case, because there is no analogue of the polynomial ring, no good
analogue of quotients by ideals, and because it only works for endomorphisms.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:11

Types

J0K = $ J1K = �

J11 + 12K = J11K ⊕ J12K J11 × 12K = J11K ⊗ J12K

Π Terms

JidK = id J21 o
9 22K = J22K ◦ J21K

J21 + 22K = J21K ⊕ J22K J21 × 22K = J21K ⊗ J22K

Jassocr+K = U⊕ Jassocl+K = U−1
⊕

Juniti+;K = _−1⊕ Junite+;K = _⊕
Jassocr×K = U⊗ Jassocl×K = U−1

⊗
Juniti×;K = _−1⊗ Junite×;K = _⊗
Jswap+K = f⊕ Jswap×K = f⊗

JdistK = X' JfactorK = X−1
'

JabsorblK = X0 JfactorzrK = X−10

√
Π Terms

JwK = l JwiK = l7

JvK = V JviK = V3

Fig. 7. Semantics of Π in rig groupoids (C, ⊗, ⊕,$, �) and of
√
Π in models of

√
Π.

Another way to formally adjoin a square root of �
5
→ � is to add a new object and two new

morphisms �
1/2 5
→ •

5 1/2

→ �, to take the free category on the resulting directed graph, and then
quotient out composition that already existed in the base category, as well as quotienting out
5 ∼ 5 1/2 ◦ 1/2 5 . This does work in arbitrary categories, satis�es a universal property, and can
be applied to arbitrary sets of morphisms 5 simultaneously. The new square roots automatically
interact well with inverses in groupoids. However, to respect rig structure we would have to take
free combinations of ⊕ and ⊗, and the bene�t of the universal property would be lost to bureaucracy.

Instead of pursuing general constructions, we will therefore simply postulate what we need of a
categorical model. It will be clear that at least one model exists.

De�nition 5.1. Given a scalar B : � → � and amorphism 5 : - → . , de�ne the scalar multiplication

of 5 by B on the left, written B • 5 , as _⊗ ◦ B ⊗ 5 ◦ _−1⊗ : - → . . One similarly de�nes scalar
multiplication on the right, 5 • B , by replacing left unitors in the above by right unitors.

De�nition 5.2. A model of
√
Π consists of a rig category (C, ⊗, ⊕,$, �) equipped with maps

l : � → � and V : � ⊕ � → � ⊕ � satisfying the equations:

(E1) l8
= id,

(E2) V2
= f⊕ ,

(E3) V ◦ S ◦ V = l2 • S ◦ V ◦ S
where S : � ⊕ � → � ⊕ � is given by S = id ⊕ l2.

This model is strong enough to express the standard gate set of Cli�ord+T. It is not a minimal
universal model, however: for example, the (computationally universal) gate set of Gaussian
Cli�ord+T only requires a fourth root of unity, i.e., the use ofl : � → � withl8

= id can be replaced
by 8 : � → � with 84 = id while still retaining computational universality.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:12 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

Name Signature Meaning

8 � → � l2

−1 � → � l4

−8 � → � l6

X � ⊕ � → � ⊕ � f⊕
% (B) � ⊕ � → � ⊕ � (for B : � → �) id ⊕ B
Z � ⊕ � → � ⊕ � % (−1)
S � ⊕ � → � ⊕ � % (8)
T � ⊕ � → � ⊕ � % (l)
H � ⊕ � → � ⊕ � l • X ◦ S ◦ V ◦ S ◦ X
K � ⊕ � → � ⊕ � l−1 • H

Midswap (� ⊕ �) ⊕ (� ⊕ �) → (� ⊕ �) ⊕ (� ⊕ �) U−1
⊕ ◦ (id ⊕ U⊕) ◦ (id ⊕ (f⊕ ⊕ id)) ◦

(id ⊕ U−1
⊕) ◦ U⊕

Mat (� ⊕ �) ⊗ � → � ⊕ � _⊗ ⊕ _⊗ ◦ X'
Ctrl< (� ⊕ �) ⊗ � → (� ⊕ �) ⊗ � given< : � → � Mat−1 ◦ (id ⊕<) ◦Mat

nCtrl< (� ⊕ �) ⊗ � → (� ⊕ �) ⊗ � given< : � → � Mat−1 ◦ (< ⊕ id) ◦Mat

SWAP (� ⊕ �) ⊗ (� ⊕ �) → (� ⊕ �) ⊗ (� ⊕ �) f⊗
CX (� ⊕ �) ⊗ (� ⊕ �) → (� ⊕ �) ⊗ (� ⊕ �) Ctrl X

CZ (� ⊕ �) ⊗ (� ⊕ �) → (� ⊕ �) ⊗ (� ⊕ �) Ctrl Z

CCX (� ⊕�)⊗ ((� ⊕�)⊗ (� ⊕�)) → (� ⊕�)⊗ ((� ⊕�)⊗ (� ⊕�)) Ctrl CX

Fig. 8. Shorthands for some maps in models of
√
Π.

Proposition 5.3. The rig groupoid Unitary of �nite-dimensional Hilbert spaces and unitaries is a

model of
√
Π.

Proof. Choosing l = exp(8c/4) and V = H(−1 0
0 8)H (with H the usual Hadamard gate, i.e.,

H =
1√
2
(1 1
1 −1)), it is veri�ed by straightforward calculation that the three equations are satis�ed. □

Wewill considerUnitary to be the standard model of
√
Π. A semantics of

√
Π can, more generally,

be given in any model satisfying Def. 5.2 by interpreting all the “classical” morphisms as in Π, and
additionally interpreting the additional combinators as shown at the bottom of Fig. 7.

De�nition 5.4 (Models). We use J−K to denote the interpretation of a
√
Π term in an arbitrary

model of
√
Π, and L−M to denote its interpretation in the standard model Unitary.

In this way, given
√
Π terms 21 and 22, we can only ever establish J21K = J22K if this holds from

the axioms of models of
√
Π alone. On the other hand, we can establish L21M = L22M by any means

sound for unitaries (e.g., matrix computation, circuit rewriting rules, ZX-calculus derivations, etc.).

5.2 Representing�antum Gates

Let (C, ⊗, ⊕,$, �) be a model of
√
Π. We demonstrate that, in any such model, all the familiar

quantum gates can be represented internally as shown in Fig. 8. We can combine these gates into
circuits using the tensor product and composition as usual. For example, the circuit

•
� �

is represented by the morphism id ⊗ H ◦ Ctrl X ◦ id ⊗ H in a model of
√
Π. Besides familiar gates,

Fig. 8 also de�nes the convenient map Mat which is so named because it can be seen as a way

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:13

to construct maps from matrix representations. This powerful technique was implicitly used in
the de�nition of Ctrl-gates in Sec. 3.2. More generally, we think of 6 as an abstract block matrix

representation of 5 when 6 ◦Mat = Mat ◦ 5 , as this means in turn that Mat−1 ◦ 6 ◦Mat = 5 .
It is straightforward to con�rm that the internal gates correspond to their usual de�nitions in

Unitary, the standard model of
√
Π. Here, we focus on properties that are valid in every model.

We begin by establishing some basic facts about scalars (morphisms � → �) in a rig (or, more
generally, monoidal) category.

Proposition 5.5. Let B and C be scalars and 5 and 6 be morphisms.

(i) B ◦ C = C ◦ B ,
(ii) if B2 = C then B−1 = C−1 ◦ B
(iii) B • 5 = 5 • B
(iv) 1 • 5 = 5 ,

(v) B • (C • 5) = (B ◦ C) • 5 ,
(vi) B • (5 ⊕ 6) = (B • 5) ⊕ (B • 6),
(vii) B • (6 ◦ 5) = (B • 6) ◦ 5 ,
(viii) B • (6 ◦ 5) = 6 ◦ (B • 5).
Proof. All but the second property are shown in the literature, e.g., [Heunen and Vicary 2019].

For (ii), we see that C−1 ◦ B ◦ B = C−1 ◦ C = id� and B ◦ C−1 ◦ B = C−1 ◦ B ◦ B = C−1 ◦ C = id� using
commutativity of scalars, so B−1 = C−1 ◦ B follows by unicity of inverses. □

The next three lemmas establish basic properties of the internal gates and scalars. Their proofs
can be found in the archived version [Carette et al. 2023].

Lemma 5.6. Let B and C be scalars.

(i) −12 = id and 82 = −1,
(ii) X2 = id,

(iii) P(B)2 = P(B2),
(iv) P(B)−1 = P(B−1),
(v) P(B) ◦ P(C) = P(B ◦ C) = P(C) ◦ P(B),
(vi) P(B) ◦ X ◦ P(B) = B • X,
(vii) X ◦ V = V ◦ X,
(viii) CX2 = id,

(ix) CZ2
= id,

(x) CCX2 = id,

(xi) X ◦ P(B) = B • P(B−1) ◦ X.
Lemma 5.7. Let 5 : - → . , 6 : - → - , and ℎ : - → - be maps, and B and C be scalars. Then:

(i) Mat ◦ (id�⊕� ⊗ 5) = (5 ⊕ 5) ◦Mat,

(ii) Mat ◦ SWAP = Midswap ◦Mat,

(iii) SWAP ◦Mat−1 = Mat−1 ◦Midswap,

(iv) Mat ◦ (5 ⊗ id�⊕�) = Midswap ◦ (5 ⊕ 5) ◦Midswap ◦Mat,

(v) SWAP ◦ Ctrl P(B) ◦ SWAP = Ctrl P(B),
(vi) Ctrl P(B) ◦ Ctrl P(C) = Ctrl P(C) ◦ Ctrl P(B),
(vii) Ctrl P(B) ◦ (id�⊕� ⊗ P(C)) = (id�⊕� ⊗ P(C)) ◦ Ctrl P(B),
(viii) Mat ◦ (X ⊗ id�⊕�) = f⊕ ◦Mat,

(ix) Mat ◦ (P(B) ⊗ id�⊕�) = (id�⊕� ⊕ (B • id)) ◦Mat.

(x) Ctrl 6 ◦ Ctrl ℎ = Ctrl(6 ◦ ℎ)
Lemma 5.8. Any model of

√
Π satis�es H ◦ X ◦ H = Z and H ◦ Z ◦ H = X.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:14 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

l · � = � · l (A1) �0�1 = �1�0 (A2)

l8
= id (A3) H2

= id (A4)

S4 = id (A5) SHSHSH = l · id (A6)

• •
• • = (A7)

(•

•
=

• (

•
(A8)

•

(•
=

•

• (
(A9)

� ((� •

•
=

• � ((�

• ((
(A10)

•

� ((� •
=

• ((

• � ((�
(A11)

• •

• � •
=

• (

(� • (� (
· l−1 (A12)

• � •

• •
=

(� • (� (

• (
· l−1 (A13)

Fig. 9. A sound and complete equational theory of ≤ 2-qubit Cli�ord circuits due to Selinger [2015]. What

we call (A3)–(A13) refer to relations (C1)–(C11) in the original paper by Selinger [2015] (equations (A1) and

(A2) become relevant once we consider ≤ 2-qubit Cli�ord+T circuits [Bian and Selinger 2022]). Note that we

swap the order of (A12) and (A13) compared to the original presentation by Selinger [2015].

6 SOUNDNESS AND COMPLETENESS

We present our main technical development:
√
Π is equationally sound and complete for a variety of

gate sets, including the computationally universal Gaussian Cli�ord+T [Amy et al. 2020]. This is

expressed in terms of a series of full abstraction results, showing that fragments of
√
Π are fully

abstract for certain classes of unitaries.
To our knowledge, this is the �rst presentation of a computationally universal quantum pro-

gramming language with a sound and complete equational theory.

6.1 ≤ 2-qubit Cli�ord Circuits

We begin by proving that models of
√
Π satisfy the sound and complete equational theory of

≤ 2-qubit Cli�ord circuits shown in Fig. 9. Cli�ord circuits are those which can be formed using
the gates {CZ, S,H} and the scalar l = 48c/4.

De�nition 6.1. In a model of
√
Π, a representation of a Cli�ord circuit is any morphism which can

be written in terms of morphisms from the sets {l, S,H,CZ} and {U⊗, U−1
⊗ , _⊗, _−1⊗ , d⊗, d

−1
⊗ , f⊗},

composed arbitrarily in parallel (using ⊗) and in sequence (using ◦). A representation of a ≤ 2-qubit
Cli�ord circuit is one with signature � ⊕ � → � ⊕ � or (� ⊕ �) ⊗ (� ⊕ �) → (� ⊕ �) ⊗ (� ⊕ �).

Note that this de�nition permits both scalar multiplication by powers ofl (since this is formulated
using the coherence isomorphisms) and use of the SWAP gate (since this is precisely f⊗). This
result relies on the generators and relations for Cli�ord circuits due to Selinger [2015], which we

prove are all satis�ed in any model of
√
Π:

(A1) l • 5 = 5 • l for all 5 follows by Prop. 5.5 (iii).
(A2) That (5 ⊗ id) ◦ (id ⊗ 6) = (id ⊗ 6) ◦ (5 ⊗ id) follows by bifunctoriality of ⊗.
(A3) l8

= id follows immediately by (E1).
(A4) We derive

H ◦ H = (l • X ◦ S ◦ V ◦ S ◦ X) ◦ (l • X ◦ S ◦ V ◦ S ◦ X) (def. H)
= l2 • X ◦ S ◦ V ◦ S ◦ X ◦ X ◦ S ◦ V ◦ S ◦ X (Prop. 5.5)
= l2 • X ◦ S ◦ V ◦ S ◦ S ◦ V ◦ S ◦ X (X2 = id)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:15

= l2 • X ◦ (l−2 • V ◦ S ◦ V) ◦ (l−2 • V ◦ S ◦ V) ◦ X (�3)
= l−2 • X ◦ V ◦ S ◦ V ◦ V ◦ S ◦ V ◦ X (Prop. 5.5)
= l−2 • X ◦ V ◦ S ◦ X ◦ S ◦ V ◦ X (�2)
= l−2 • X ◦ V ◦ (l2 • X) ◦ V ◦ X (Lem. 5.6 (vi))
= X ◦ V ◦ X ◦ V ◦ X (Prop. 5.5)
= X ◦ X ◦ V ◦ V ◦ X (Lem. 5.6 (vii))
= X ◦ X ◦ X ◦ X (�2)
= id (X2 = id)

(A5) S4 = (id ⊕ 8)4 = (id ⊕ l2)4 = id4 ⊕ l8
= id ⊕ id = id by bifunctoriality and (E1).

(A6) We compute

(S ◦ H)3 = (S ◦ (l • X ◦ S ◦ V ◦ S ◦ X))3 (def. H)
= (l • S ◦ X ◦ S ◦ V ◦ S ◦ X)3 (Prop. 5.5)
= (l • (l2 • X) ◦ V ◦ S ◦ X)3 (Lem. 5.6 (vi))
= (l3 • X ◦ V ◦ S ◦ X)3 (Prop. 5.5)
= (l3 • X ◦ V ◦ S ◦ X) ◦ (l3 • X ◦ V ◦ S ◦ X) ◦ (l3 • X ◦ V ◦ S ◦ X) (expand)
= l9 • X ◦ V ◦ S ◦ X ◦ X ◦ V ◦ S ◦ X ◦ X ◦ V ◦ S ◦ X (Prop. 5.5)
= l • X ◦ V ◦ S ◦ V ◦ S ◦ V ◦ S ◦ X ((�1), X2 = id)
= l • X ◦ (l2 • S ◦ V ◦ S) ◦ S ◦ V ◦ S ◦ X (�3)
= l3 • X ◦ S ◦ V ◦ S ◦ S ◦ V ◦ S ◦ X (Prop. 5.5)
= l3 • X ◦ S ◦ V ◦ S ◦ X ◦ X ◦ S ◦ V ◦ S ◦ X (X2 = id)
= l • (l • X ◦ S ◦ V ◦ S ◦ X) ◦ (l • X ◦ S ◦ V ◦ S ◦ X) (Prop. 5.5)
= l • (H ◦ H) (def. H)
= l • id (�4)

(A7) By Lem. 5.6 (ix).
(A8) We have

Ctrl Z ◦ (S ⊗ id) = SWAP ◦ Ctrl Z ◦ SWAP ◦ (S ⊗ id) (Lem. 5.7 (v))

= SWAP ◦ Ctrl Z ◦ (id ⊗ S) ◦ SWAP (naturality SWAP)
= SWAP ◦ (id ⊗ S) ◦ Ctrl Z ◦ SWAP (Lem. 5.7(E88))
= (S ⊗ id) ◦ SWAP ◦ Ctrl Z ◦ SWAP (naturality SWAP)
= (S ⊗ id) ◦ Ctrl Z (Lem. 5.7 (v))

(A9) By Lem. 5.7 (v).
(A10) Since S ◦ S = Z and H ◦ S ◦ S ◦ H = H ◦ Z ◦ H = X by Lems. 5.6 and 5.8, it su�ces to show

Ctrl Z ◦ (X ⊗ id) = X ⊗ Z ◦ Ctrl Z. This follows by

Ctrl Z ◦ (X ⊗ id) = Mat−1 ◦ (id ⊕ Z) ◦Mat ◦ (X ⊗ id) (def. Ctrl)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:16 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

= Mat−1 ◦ (id ⊕ Z) ◦ f⊕ ◦Mat (Lem. 5.7(E888))
= Mat−1 ◦ f⊕ ◦ (Z ⊕ id) ◦Mat (naturality f⊕)
= (X ⊗ id) ◦Mat−1 ◦ (Z ⊕ id) ◦Mat (Lem. 5.7(E888))
= (X ⊗ id) ◦Mat−1 ◦ (Z ⊕ (Z ◦ Z)) ◦Mat (Z2

= id)
= (X ⊗ id) ◦Mat−1 ◦ (Z ⊕ Z) ◦ (id ⊕ Z) ◦Mat (bifunctoriality ⊕)
= (X ⊗ id) ◦ (id ⊗ Z) ◦Mat−1 ◦ (id ⊕ Z) ◦Mat (Lem. 5.7(8))
= (X ⊗ Z) ◦Mat−1 ◦ (id ⊕ Z) ◦Mat (bifunctoriality ⊗)
= X ⊗ Z ◦ Ctrl Z (def. Ctrl)

(A11) Similarly, since it has already been established that H ◦ S ◦ S ◦H = X and S ◦ S = Z, it su�ces
to show Ctrl Z ◦ (id ⊗ X) = Z ⊗ X ◦ Ctrl Z:

Ctrl Z ◦ (id ⊗ X) = SWAP ◦ Ctrl Z ◦ SWAP ◦ (id ⊗ X) (Lem. 5.6(E))
= SWAP ◦ Ctrl Z ◦ (X ⊗ id) ◦ SWAP (naturality SWAP)
= SWAP ◦ X ⊗ Z ◦ Ctrl Z ◦ SWAP (�10)
= Z ⊗ X ◦ SWAP ◦ Ctrl Z ◦ SWAP (naturality SWAP)
= Z ⊗ X ◦ Ctrl Z (Lem. 5.6(E))

(A12) See the archived version [Carette et al. 2023].
(A13) This relation follows by the above since

l−1 • ((S ◦ H ◦ S) ⊗ S) ◦ Ctrl Z ◦ ((H ◦ S) ⊗ id)
= l−1 • ((S ◦ H ◦ S) ⊗ S) ◦ SWAP ◦ Ctrl Z ◦ SWAP ◦ ((H ◦ S) ⊗ id) (Lem. 5.7 (v))
= l−1 • SWAP ◦ (S ⊗ (S ◦ H ◦ S)) ◦ Ctrl Z ◦ (id ⊗ (H ◦ S)) ◦ SWAP (naturality SWAP)
= SWAP ◦ (l−1 • ((S ⊗ (S ◦ H ◦ S)) ◦ Ctrl Z ◦ (id ⊗ (H ◦ S))) ◦ SWAP (Prop. 5.5)
= SWAP ◦ Ctrl Z ◦ (id ⊗ H) ◦ Ctrl Z ◦ SWAP (�12)
= SWAP ◦ Ctrl Z ◦ SWAP ◦ SWAP ◦ (id ⊗ H) ◦ Ctrl Z ◦ SWAP (SWAP involutive)
= SWAP ◦ Ctrl Z ◦ SWAP ◦ (H ⊗ id) ◦ SWAP ◦ Ctrl Z ◦ SWAP (naturality SWAP)
= Ctrl Z ◦ (H ⊗ id) ◦ Ctrl Z (Lem. 5.7 (v))

These derivations lead us, as a �rst step, to full abstraction for ≤ 2-qubit Cli�ord circuits.

Theorem 6.2 (Full abstraction for ≤ 2-qbit Clifford). Let 21 and 22 be
√
Π terms represent-

ing Cli�ord circuits of at most two qubits. Then J21K = J22K i� L21M = L22M.

Proof. The identities (A3)–(A13) are complete for ≤ 2-qubit Cli�ord circuits by [Selinger 2015,
Prop. 7.1] (see Remark 7.2 regarding the special case of ≤ 2-qubit circuits), and have been shown

above to hold in any model of
√
Π. □

6.2 =-qubit Cli�ord Circuits

To extend Thm. 6.2 to Cli�ord circuits with an arbitrary number of qubits, it su�ces by a result of
Selinger [2015] to prove just four identities (shown in Fig. 10). Interestingly, by showing that models

of
√
Π admit a few circuit rewriting rules and applying these, we will see that the heavy lifting of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:17

•
• •
•

=

•
• •
• (B1)

• � • • � •

• � • � • � • � •

� • �

=

� • �

• � • � • � • � •

• � • • � •
(B2)

• � • � • � • � • � • �

• � • � • • � • � • • � • � •

• • •
= (B3)

• • •

• � • � • • � • � • • � • � •

• � • � • � • � • � • �

= (B4)

Fig. 10. The 3-qubit identities of Cli�ord circuits due to Selinger [2015] which, together with (A3)–(A13) of

Fig. 9, form a sound and complete equational theory of Cli�ord circuits.

these four identities can be done entirely by classical reasoning. This lets us exploit the soundness
and completeness of Π with respect to its permutation semantics, which greatly simpli�es these
proofs.

Recall that we interpret controlled gates in
√
Π using theCtrlmacro, such that, e.g., a controlled-X

gate • becomes Ctrl X. If we’re interested in a controlled gate where the target line is above rather
than below, we can simply conjugate it by a swap, e.g.,

• =
× • ×
× × .

Thus a “bottom-controlled” X is interpreted in
√
Π as SWAP ◦ Ctrl X ◦ SWAP. We �rst collect some

useful additional properties of Ctrl - and Ctrl Z.

Lemma 6.3. The following identities hold in any model of
√
Π:

(i) id ⊗ H ◦ Ctrl X ◦ id ⊗ H = Ctrl Z,

(ii) H ⊗ id ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ H ⊗ id = Ctrl Z,

(iii) id ⊗ H ◦ Ctrl Z ◦ id ⊗ H = Ctrl X,

(iv) H ⊗ id ◦ Ctrl Z ◦ H ⊗ id = SWAP ◦ Ctrl X ◦ SWAP,

(v) H ⊗ id ◦ Ctrl X ◦ H ⊗ id = id ⊗ H ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ id ⊗ H

Proof. See the archived version [Carette et al. 2023]. □

These have direct interpretations as circuit identities, which we will use to simplify (B1)–(B4).

Corollary 6.4. The following circuit identities hold in any model of
√
Π:

(i)
•

� �
=

•
• ,

(ii)
� �

•
=

•
• ,

(iii)
•

� • �
=

•
,

(iv)
� • �

• = • ,

(v)
� • �

=
� • �

,

(vi)
* ×

×
=

×

× *
and

×

* ×
=

× *

×
for any gate * .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:18 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

Proof. Points (i)–(v) hold by Lem. 6.3, while (vi) is naturality of SWAP. □

We can now tackle the four 3-qubit rules for Cli�ord circuits, named (C12)–(C15) in the presen-
tation of Selinger [2015], which we call (B1)–(B4).

(B1) This rule is can be derived using the circuit identities and classical completeness.

•
• •
•

=

� � • � �

• •
� � • � �

(A4)

=

� �

• •
� �

(Cor. 6.4)

=

� �

• •
� �

(P1)

=

•
• •
•

(Cor. 6.4)

Notice how the essential argument of this proof is the classical identity (P1).
(B2) We refer to the archived version [Carette et al. 2023].
(B3) As above.
(B4) We derive

• • •

• � • � • • � • � • • � • � •

• � • � • � • � • � • �

=

• • •

� � • � • � • � � • � • � • � � • � • � • � �

• � • � • � • � • � • �

(A4)

=

• • •

� • • • �

• • •

(Cor. 6.4)

= � �

(P5)

=

(A4)

From this follows an equational completeness result for Cli�ord circuits of arbitrary size.

Theorem 6.5 (Full abstraction for Clifford circuits). Let 21 and 22 be
√
Π terms representing

Cli�ord circuits of arbitrary size. Then J21K = J22K i� L21M = L22M.

Proof. The identities (A3)–(A13) and (B1)–(B4) are complete for Cli�ord circuits of arbitrary

size by Selinger [2015, Thm. 7.1], and have been shown above to hold in any model of
√
Π. □

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:19

T2 = S (A14) (THSSH)2 = l · id (A15)

) •

•
=

•)

•
(A16)

• � • �)

� • � •
=

• � • �

) � • � •
(A17)

•
) �) −1) �) −1 =

•
) �) −1) �) −1 (A18)

•
) �) �) −1) �) −1 �) −1 =

•
) �) �) −1) �) −1 �) −1 (A19)

• �) �

�) � •
=

�) � •

• �) �
(A20)

Fig. 11. The remaining identities which, along with (A1)–(A13) of Fig. 9, form a sound and complete equational

theory of ≤ 2-qubit Cli�ord+T circuits [Bian and Selinger 2022].

6.3 ≤ 2-qubit Cli�ord+T

We extend Thm. 6.2 to show that models of
√
Π are sound and complete for all ≤ 2-qubit Cli�ord+T

circuits. We do this by showing the remaining identities of Bian and Selinger [2022] (see Fig. 11),
which, together with (A1)–(A13) from Sec. 6.1, are equationally sound and complete for ≤ 2-qubit
Cli�ord+T circuits. Recall that Cli�ord+T circuits are those which can be formed using the scalar l
and gates {S,H,CZ, T}. This leads us to the following de�nition of representations of Cli�ord+T

circuits in models of
√
Π:

De�nition 6.6. In a model of
√
Π, a representation of a Cli�ord+T circuit is anymorphismwhich can

be written in terms of morphisms from the sets {l, S,H,CZ, T} and {U⊗, U−1
⊗ , _⊗, _−1⊗ , d⊗, d

−1
⊗ , f⊗},

composed arbitrarily in parallel (using ⊗) and in sequence (using ◦). A representation of a ≤ 2-qubit
Cli�ord+T circuit is one with signature � ⊕ � → � ⊕ � or (� ⊕ �) ⊗ (� ⊕ �) → (� ⊕ �) ⊗ (� ⊕ �).

We start by showing an equivalence of representations of negatively controlled gates, as the
de�nition of nCtrl in Fig. 8 may be considered non-standard. One usually thinks of a negatively
controlled gate as a positively controlled one conjugated by X on the control line, and we show that
our de�nition nCtrl is a convenient reduced form for stating this. Bian and Selinger [2022] uses yet
another representation of negatively controlled X and H, which we also show to be equivalent.

Lemma 6.7 (Negative control). Let 5 : - → - be a map in a rig category. Then

(i) nCtrl 5 = X ⊗ id ◦ Ctrl 5 ◦ X ⊗ id,

(ii) nCtrl 5 = Ctrl 5 ◦ id ⊗ 5 when 5 is involutive.

Proof. See the archived version [Carette et al. 2023]. □

We are now ready to derive the remaining identities.

(A14) By Lem. 5.6 and de�nition of S and T, T2 = P(l)2 = P(l2) = S.
(A15) We derive

(T ◦ H ◦ S ◦ S ◦ H)2 = (T ◦ H ◦ Z ◦ H)2 (S2 = Z)
= (T ◦ X)2 (Lem. 5.8)
= T ◦ X ◦ T ◦ X (expand)
= (l • X) ◦ X (Lem. 5.6)
= l • (X ◦ X) (Prop. 5.5)
= l • id (X2 = id)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:20 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

(A16) This is a special case of commutativity of phase gates:

Ctrl Z ◦ (T ⊗ id) = SWAP ◦ Ctrl Z ◦ SWAP ◦ (T ⊗ id) (Lem. 5.7)
= SWAP ◦ Ctrl Z ◦ (id ⊗ T) ◦ SWAP (naturality SWAP)
= SWAP ◦ (id ⊗ T) ◦ Ctrl Z ◦ SWAP (Lem. 5.7)
= (T ⊗ id) ◦ SWAP ◦ Ctrl Z ◦ SWAP (naturality SWAP)
= (T ⊗ id) ◦ Ctrl Z (Lem. 5.7)

(A17) By �rst applying circuit identities from Cor. 6.4, this identity amounts to showing that

•)

•
=

•

) •

We then derive this:

(T ⊗ id) ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X
= (T ⊗ id) ◦ Ctrl X ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X ((Ctrl X)2 = id)
= (T ⊗ id) ◦ (id ⊗ H) ◦ Ctrl Z ◦ (id ⊗ H) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (Lem. 6.3)
= (id ⊗ H) ◦ (T ⊗ id) ◦ Ctrl Z ◦ (id ⊗ H) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (bifunctoriality ⊕)
= (id ⊗ H) ◦ Ctrl Z ◦ (T ⊗ id) ◦ (id ⊗ H) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (�16)
= (id ⊗ H) ◦ Ctrl Z ◦ (id ⊗ H) ◦ (T ⊗ id) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (bifunctoriality ⊕)
= Ctrl X ◦ (T ⊗ id) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (Lem. 6.3)
= Ctrl X ◦ (T ⊗ id) ◦ SWAP (P6)

= Ctrl X ◦ SWAP ◦ (id ⊗ T) (naturality SWAP)
= Ctrl X ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ (id ⊗ T) (P6)

= SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ (id ⊗ T) ((Ctrl X)2 = id)

(A18) As noted by Bian and Selinger [2022], this identity and the next are both of the form

•

* ,

=
•

, *

for some* : � ⊕ � → � ⊕ � and, : � ⊕ � → � ⊕ � . This is because
id ⊗ 6−1 ◦ nCtrl 5 ◦ id ⊗ 6

= id ⊗ 6−1 ◦Mat−1 ◦ (5 ⊕ id) ◦Mat ◦ id ⊗ 6 (de�nition nCtrl)
= Mat−1 ◦ (6−1 ⊕ 6−1) ◦ (5 ⊕ id) ◦ (6 ⊕ 6) ◦Mat (Lem. 5.7 (i))
= Mat−1 ◦ ◦((6−1 ◦ 5 ◦ 6) ⊕ (6−1 ◦ 6) ◦Mat (bifunctoriality ⊕)
= Mat−1 ◦ ((6−1 ◦ 5 ◦ 6) ⊕ id) ◦Mat (6 invertible)

In other words, conjugating a negatively controlled 5 -gate by 6 on the target line yields a
negatively controlled 6−1 ◦ 5 ◦ 6-gate (idem for positively controlled gates). Thus, it su�ces
to show that positively controlled gates commute with negatively controlled gates.

Ctrl 5 ◦ nCtrl 6
= Mat−1 ◦ (id ⊕ 5) ◦Mat ◦Mat−1 ◦ (6 ⊕ id) ◦Mat (de�nition Ctrl, nCtrl)
= Mat−1 ◦ (id ⊕ 5) ◦ (6 ⊕ id) ◦Mat (Mat invertible)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:21

84[9] = id (D1) 8 [:]- [9,:] = - [9,:]8 [9] (D10)

X2[9,:] = id (D2) X[:,;]X[9,:] = X[9,:]X[9,;] (D11)

K8[9,:] = id (D3) X[9,;]X[:,;] = X[:,;]X[9,:] (D12)

K[:,;]X[9,:] = X[9,:]K[9,;] (D13)

8 [9]8 [:] = 8 [:]8 [9] (D4) K[9,;]X[:,;] = X[:,;]K[9,:] (D14)

8 [9]X[:,;] = X[:,;]8 [9] (D5) K[9,:]8
2
[:] = X[9,:]K[9,:] (D15)

8 [9]K[:,;] = K[:,;]8 [9] (D6) K[9,:]8
3
[:] = 8 [:]K[9,:]8 [:]K[9,:] (D16)

X[9,:]X[;,<] = X[;,<]X[9,:] (D7) K[9,:]8 [9]8 [:] = 8 [9]8 [:]K[9,:] (D17)

X[9,:]K[;,<] = K[;,<]X[9,:] (D8) K2[9,:]8 [9]8 [:] = id (D18)

K[9,:]K[;,<] = K[;,<]K[9,:] (D9) K[9,:]K[;,<]K[9,;]K[:,<] = K[9,;]K[:,<]K[9,:]K[;,<] (D19)

Fig. 12. The sound and complete equational theory of Gaussian dyadic rational unitaries due to [Bian and

Selinger 2021].

= Mat−1 ◦ (6 ⊕ id) ◦ (id ⊕ 5) ◦Mat (bifunctoriality ⊕)
= Mat−1 ◦ (6 ⊕ id) ◦Mat ◦Mat−1 ◦ (id ⊕ 5) ◦Mat (Mat invertible)
= nCtrl 6 ◦ Ctrl 5 (de�nition Ctrl, nCtrl)

(A19) As above.
(A20) See the archived version [Carette et al. 2023].

Summing up:

Theorem 6.8. Let 21 and 22 be
√
Π terms representing Cli�ord+T circuits of at most two qubits.

Then J21K = J22K i� L21M = L22M.

Proof. (A1)–(A20) are sound and complete for Cli�ord+T circuits of at most two qubits [Bian

and Selinger 2022], and have been shown to hold in any model of
√
Π (see also Thm. 6.2). □

6.4 Unitaries with Entries in Z[1
2
, 8]

We now show that models of
√
Π are equationally sound and complete for unitaries with entries

from the ring Z[1
2
, 8] (i.e., the ring of integers extended with 1

2
and 8). We call these Gaussian dyadic

rational unitaries. It was shown by Amy et al. [2020] that every circuit in the computationally
universal Gaussian Cli�ord+T gate set has an exact representation as a unitary matrix with entries
in Z[1

2
, 8]. A sound and complete equational theory for these unitaries was given by Bian and

Selinger [2021] (see Fig. 12). In other words, these unitaries are enough to approximate any other
�nite quantum computation to any desired degree of error, and they can be reasoned about using a
sound and complete equational theory.

In this section, we show that this equational theory is subsumed by that of
√
Π. Then we show

that the easy direction of [Amy et al. 2020] can also be internalised in models of
√
Π, thus proving

equational soundness and completeness for Gaussian Cli�ord+T circuits.
Unlike the previous results, which concerned circuits (formed using ⊗), this result concerns

only matrices (formed using ⊕). This also means that the presentation (in Fig. 12) is quite di�erent.
Gaussian dyadic rational unitaries are generated by 8 , X, and K, where K is a variant of the Hadamard
gate given by K = l−1 • H2. In Fig. 12, these are additionally given indices, assumed distinct,

2Note the slight discrepancy in the literature that Bian and Selinger [2021] take K = l−1 • H while Amy et al. [2020] use

K = l • H. However, since one de�nition is inverse to the other, and*= (Z[12 , 8]) is closed under inversion, the particular

choice doesn’t matter so long as it is done consistently.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:22 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

corresponding to the component(s) that the generator is applied to. When proving these identities,
we further assume indices to start from 1 and to be consecutive in the order written. We are free to
do so since we can simply conjugate by the appropriate permutation to make it so (recalling that Π
can express all permutations). Likewise, we will assume identities to be minimal, and only consider
the case that uses the number of distinct indices; any other case reduces to this by appending
an identity morphism as necessary using the direct sum and conjugating by a permutation. For
example, in the context on an = × = unitary (i.e., a morphism �⊕= → �⊕= , where �⊕= is taken as
usual to mean the =-fold direct sum of � with itself), X[2,3] is taken to mean id� ⊕ X ⊕ id� ⊕=−3 (up to
associativity). To form X[2,4] would require us to conjugate this by the permutation swapping the
third and fourth components.

De�nition 6.9. In a model of
√
Π, a representation of a Gaussian dyadic rational unitary is any mor-

phismwhich can bewritten in terms ofmorphisms from the sets {8,K} and {U⊕, U−1
⊕ , _⊕, _−1⊕ , d⊕, d

−1
⊕ ,

f⊕}, composed arbitrarily in parallel (using ⊕) and in sequence (using ◦).
Note that the above de�nition permits the use of X since X = f⊕ by de�nition. It is additionally

important to realise that the notion of parallel composition is di�erent between the above the
previous de�nitions concerning circuits, as this uses the direct sum ⊕ for parallel composition
whereas the circuits used the tensor product ⊗.

We show that the identities of Fig. 12 are all satis�ed in any model of
√
Π.

(D1) 84 = (l2)4 = l8
= id by (E1).

(D2) X2 = f2⊕ = id by the rig axioms.
(D3) We start by seeing that

K2
= (l−1 • H) ◦ (l−1 • H) (def. K)
= (l−1 ◦ l−1) • H ◦ H (Prop. 5.5)
= (l7 ◦ l7) • id (A4)

= (l8 ◦ l6) • id (◦ associative)
= l6 • id (E1)

and so 8
= (2)4 = (l6 • id)4 = l24 • id = (l8 ◦ l8 ◦ l8) • id = id by (E1) and Prop. 5.5.

(D4–9) These are all instances of bifunctoriality for ⊕, i.e., (5 ⊕ id) ◦ (id ⊕ 6) = (id ⊕ 6) ◦ (5 ⊕ id).
(D10) We have

(id ⊕ 8) ◦ X = (id ⊕ 8) ◦ f⊕ (de�nition X)
= f⊕ ◦ (8 ⊕ id) (naturality f⊕)
= X ◦ (8 ⊕ id) (de�nition X)

(D11) We show the more general case for any 5 , from which this identity follows as the case of
5 = X. Marking lines in the string diagram by indices, we see that this is nothing but

f

f
=

j k l

j k l

which follows by invertibility of the symmetry.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:23

(D12) Likewise, we show the more general case for any 5 , from which this identity will follows as
the case where 5 = X. Marking lines in the string diagram by indices, we get

f

f

=

j k l j k l

f

=

j k l

which follows by (respectively) naturality and invertibility of the symmetry.
(D13) This follows by the generalised form of (D11) with 5 = K.
(D14) This follows by the generalised form of (D12) with 5 = K.
(D15) We have

K ◦ Z = K ◦ Z ◦ H ◦ H (A4)

= K ◦ Z ◦ H ◦ (l • K) (de�nition H)
= (l • K) ◦ Z ◦ H ◦ K (Prop. 5.5)
= H ◦ Z ◦ H ◦ K (de�nition H)
= X ◦ K (Lem. 5.8)

(D16) We reduce

K ◦ Z ◦ S = X ◦ K ◦ S (D15)

= X ◦ X ◦ S ◦ V ◦ S ◦ X ◦ S (de�nition K)
= S ◦ V ◦ S ◦ X ◦ S (X involutive)
= S ◦ V ◦ (8 • X) (Lem. 5.6 (vi))
= 8 • S ◦ V ◦ X (Prop. 5.5)

and

S ◦ K ◦ S ◦ K = S ◦ X ◦ S ◦ V ◦ S ◦ X ◦ S ◦ X ◦ S ◦ V ◦ S ◦ X (de�nition K)
= (8 • X) ◦ V ◦ S ◦ X ◦ (8 • X) ◦ V ◦ S ◦ X (Lem. 5.6 (vi))
= 82 • X ◦ V ◦ S ◦ X ◦ X ◦ V ◦ S ◦ X (Prop. 5.5)
= −1 • X ◦ V ◦ S ◦ V ◦ S ◦ X (X involutive)
= −1 • X ◦ V ◦ (−8 • V ◦ S ◦ V) ◦ X (E3)

= −1 ◦ −8 • X ◦ V ◦ V ◦ S ◦ V ◦ X (Prop. 5.5)
= 8 • X ◦ X ◦ S ◦ V ◦ X (E2)

= 8 • S ◦ V ◦ X (X involutive)
so K ◦ Z ◦ S = 8 • S ◦ V ◦ X = S ◦ K ◦ S ◦ K.

(D17) It follows that

K ◦ (8 ⊕ 8) = K ◦ (8 • (id ⊕ id)) (Prop. 5.5)
= 8 • K ◦ id (bifunctoriality ⊕)
= 8 • K (Prop. 5.5)
= 8 • (id ⊕ id) ◦ K (bifunctoriality ⊕)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:24 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

= (8 ⊕ 8) ◦ K (Prop. 5.5)
(D18) We derive

K2 ◦ (8 ⊕ 8) = K2 ◦ (8 • (id ⊕ id)) (Prop. 5.5)
= 8 • K2 (Prop. 5.5)
= 8 • (l−1 • H) ◦ (l−1 • H) (de�nition K)
= 8 ◦ l−1 ◦ l−1 • H ◦ H (Prop. 5.5)
= 8 ◦ −8 • id (A4)

= id (E1)

(D19) This �nal identity turns out to be an instance of bifunctoriality of the tensor product in
disguise, as shown in the archived version [Carette et al. 2023].

We obtain yet another equational completeness result:

Theorem 6.10 (Full abstraction for Gaussian dyadic rational unitaries). Let 21 and 22 be√
Π terms representing unitaries with entries in the ring Z[1

2
, 8]. Then J21K = J22K i� L21M = L22M.

Proof. Identities (D1)–(D19) form a sound and complete equational theory for Gaussian dyadic
rational unitaries [Bian and Selinger 2021]. □

6.5 Gaussian Cli�ord+T Circuits

We mentioned in Sec. 6.4 the one-to-one correspondence (due to [Amy et al. 2020]) between circuits
in the (computationally universal) Gaussian Cli�ord+T gate set {X,CX,CCX,K, S} and Gaussian
dyadic rational unitaries.

De�nition 6.11. In a model of
√
Π, a representation of a Gaussian Cli�ord+T circuit is anymorphism

which can be written in terms of morphisms from the sets {X,CX,CCX,K, S} and {U⊗, U−1
⊗ , _⊗, _−1⊗ ,

d⊗, d−1⊗ , f⊗}, composed arbitrarily in parallel (using ⊗) and in sequence (using ◦).

We argue that we can reason about Gaussian Cli�ord+T circuits in models of
√
Π by reasoning

about their matrices, using the coherence theorem for rig categories. Recall that a bipermutative

category is a rig category where both symmetric monoidal structures are strict, and the annihilators
and right distributor are all identities. (The explicit de�nition can be found in [May 1977].)
The coherence theorem for rig categories can be stated in terms of bipermutative categories as

follows:

Theorem 6.12. Any rig category is rig equivalent to a bipermutative category.

Proof. See [May 1977, VI, Prop. 3.5]. □

We can use this theorem to make the rig structure in any model of
√
Π bipermutative. This is very

handy since we notice that in a bipermutative category, the isomorphismMat : (� ⊕ �) ⊗� → �⊕�
is the identity, as it is composed of the right distributor and some unitors; similarly, Midswap :

(� ⊕ �) ⊕ (� ⊕�) → (� ⊕�) ⊕ (� ⊕�) is id ⊕ f⊕ ⊕ id (we don’t need to worry about associativity

due to strictness). Since in a general model of
√
Π we have

CX = Ctrl X = Mat−1 ◦ (id ⊕ X) ◦Mat,

in a bipermutative model of
√
Π we have CX = id ⊕ X; and CCX = (id ⊕ (id ⊕ X)). As

SWAP = Mat−1 ◦Mat ◦ SWAP = Mat−1 ◦Midswap ◦Mat

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:25

by invertibility of Mat and Lem. 5.7, we have that SWAP = Midswap = id ⊕ X ⊕ id in the biper-
mutative case, so even swapping two circuit lines reduces to applying X. As such, X, CX, CCX, K,

S, and SWAP are all Gaussian dyadic rational unitaries in a bipermutative model of
√
Π. This is

the key observation in obtaining equational soundness and completeness for Gaussian Cli�ord+T
circuits (as it was for classical reversible circuits as well [Choudhury et al. 2022]).

We will need a small lemma. Let SWAPASSOC : (� ⊕ �) ⊗ ((� ⊕ �) ⊗�) → (� ⊕ �) ⊗ ((� ⊕ �) ⊗�)
denote the natural isomorphism U⊗ ◦ SWAP ⊗ id ◦ U−1

⊗ .

Lemma 6.13. In any model of
√
Π, we have

(Mat ⊕ Mat) ◦Mat ◦ SWAPASSOC = Midswap ◦ (Mat ⊕ Mat) ◦Mat.

Proof. See the archived version [Carette et al. 2023]. □

Theorem 6.14 (Full abstraction for Gaussian Clifford+T circuits). Let 21 and 22 be
√
Π

terms representing Gaussian Cli�ord+T circuits. Then J21K = J22K i� L21M = L22M.

Proof. Let 21, 22 : (� ⊕ �)⊗= → (� ⊕ �)⊗= . By coherence, we may assume every model of
√
Π in

sight to be bipermutative.
As noted above, the gates of the Gaussian Cli�ord+T gate set are all representations of Gaussian

dyadic rational unitaries in this bipermutative model: X and K are so directly, and S = id ⊕ 8 ,
CX = id ⊕ X and CCX = id ⊕ (id ⊕ X) are so too by closure under direct sums. To see that the
tensor product of two representations is also a representation, it su�ces to show that tensoring by
identities on (� ⊕ �)⊗< on either side preserves this property, since we have (5 ⊗ id) ◦ (id⊗6) = 5 ⊗6:

• By Lem. 5.7, tensoring by id�⊕� on the left yields id�⊕� ⊗ 5 = Mat−1 ◦ (5 ⊕ 5) ◦Mat, so in the
bipermutative case id�⊕� ⊗ 5 = 5 ⊕ 5 , which is again a representation of a Gaussian dyadic
rational unitary unitary when 5 is, by closure under direct sum. But then we can repeat this
process< − 1 times to tensor by id(�⊕�)⊗< .

• By naturality, 5 ⊗ id(�⊕�)⊗< = f⊗ ◦ id(�⊕�)⊗< ⊗ 5 ◦ f⊗ , so this reduces to the case above since
(in the bipermutative case, using Lems. 6.13 and 5.7) the symmetry f⊗ on (� ⊕ �)⊗? ⊗ (� ⊕ �)⊗@
is nothing but a series of direct sums of identities and ⊕-symmetries on � ⊕ � (i.e., X gates).

Finally, since representations of Gaussian dyadic rational unitaries are also closed under composition,
it follows that any representation of a Gaussian Cli�ord+T circuit in a bipermutative category is
directly also a representation of a Gaussian dyadic rational unitary.

From this it follows for terms 21 and 22 representing Gaussian Cli�ord+T circuits that J21K = J22K
i� they are equal as representations of Gaussian dyadic rational unitaries, which in turn happens
(by Thm. 6.10) i� they are equal as actual unitaries inUnitary (so speci�cally as Gaussian Cli�ord+T
circuits), i.e., i� L21M = L22M. □

7 CIRCUIT EQUIVALENCES

As a supplement to this paper, we have developed an Agda library and used it to formalise some of
our results. We discuss its use in proving the Sleator-Weinfurter decomposition of CCX mentioned
in Sec. 3, as well as keys aspects of the implementation.

7.1 Decomposing CCX

In the previous section, we noted that every gate in the Gaussian Cli�ord+T gate set has a “matrix
representation”, i.e., that it can be written as Mat−1 ◦ 6 ◦ Mat for some 6 that only uses K, X, 8 ,
direct sums and composition. To prove the correctness of the Sleator-Weinfurter decomposition
(see Fig. 2 on page 6), we will use a common technique: �nd the matrix form of each gate, compose
them to form the circuit, and use elementary reasoning to take care of the rest.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

19:26 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

The �rst step seems simple given that each elementary gate has a matrix representation, but
additional work is required in the case of multi-qubit circuits. This is because the exact positioning
of the gate alters its representation. For example, to �nd the matrix representation of a CX applied
to the top two qubits of a three qubit circuit, we apply it instead to the bottom two qubits and apply
SWAP gates to “rewire” the circuit appropriately, as in

•
=

× ×
×× • ××
× ×

This form allows us to use Lems. 5.7 and 6.13 to �nd its matrix representation, which turns out
(with a bit of work) to be

Mat−1 ◦ (Mat−1 ⊕ Mat−1) ◦ (id ⊕ f �⊕� ,�⊕�⊕) ◦ (Mat ⊕ Mat) ◦Mat .

We use the same technique to �nd the matrix representation of the remaining gates in the circuit
and compose them, yielding (after removing a number of super�uous Mat−1 ◦Mat)

Mat−1 ◦ (Mat−1 ⊕ Mat−1) ◦ (id ⊕ (V ⊕ V)) ◦ (id ⊕ f �⊕� ,�⊕�⊕) ◦ ((id ⊕ V−1) ⊕ (id ⊕ V−1)) ◦
(id ⊕ f �⊕� ,�⊕�⊕) ◦ ((id ⊕ V) ⊕ (id ⊕ V)) ◦ (Mat ⊕ Mat) ◦Mat

Expanding out and applying naturality of f⊕ , invertibility of V, and bifunctoriality a few times
show that this is equivalent to our previous de�nition of CCX, i.e.

Mat−1 ◦
(
id ⊕

(
Mat−1 ◦ (id ⊕ -) ◦Mat

))
◦Mat.

An Agda program implementing the formal proof can be found in the supplementary material. The
equational proofs are reasonably readable by humans (much more so than tactic proofs would be)
but not so enlightening that including them here would be warranted.

7.2 Agda Implementation

Presented with the choice of working in the syntax of
√
Π (Sec. 4) or in its generic models (Def. 5.2),

we chose to work in the latter for purely practical considerations: the library agda-categories

already contains a wealth of reasoning combinators for both categories and monoidal categories
that we would have to reproduce in the syntax of the language. Furthermore, it also has proofs of
useful results, such as Kelly’s various coherence lemmas, and de�nes useful extra combinators like
“middle exchange” (our Midswap). As we would have had to reproduce all of that, this seemed like
a simple choice.
However, everything in agda-categories is weak, so that we have to worry about units and

association in our formal proofs. Doing this manually is overwhelmingly tedious. Luckily, there
are a lot of combinators already de�ned that make this essentially bearable. The translation from
the proofs presented in the paper, which ignore associativity altogether, does require some care.

We have not yet had a chance to formalise everything. We did formalise all of Sec. 5, all results
in Sec. 6.1, Lem. 6.3 of Sec. 6.2, Lem. 6.7, and (A14) to (A17) in Sec. 6.3. We foresee no additional
di�culties for other parts, except that many of the later equations are larger. Going at “full speed,”
a proof like that of Sleator-Weinfurter takes a little over an hour of dedicated work. However,
identities like (B1)–(B4) and (A20) are likely to take several hours each.

We did not �nd any errors in any of the paper proofs while formalising them. We did �nd several
cross-referencing errors (i.e., the wrong lemma justifying the step had been written down), which
were subsequently corrected. Interestingly, we did �nd an error in agda-categories itself: it was
missing some coherences for RigCategory. This error has been �xed in the library.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:27

We did �nd that some classical coherences used in the proofs of Lem. 5.5 and 5.6 were signi�-
cantly more work to prove than the diagrammatic sketches let on. Three of the sub-parts of these
“preliminary lemmas” accounted for more than a day’s work each.

Nevertheless, we conclude that doing categorical meta-theory for quantum programming lan-
guages absolutely can be formalised at a reasonable cost.

8 CONCLUDING REMARKS

In this paper we have studied square roots from a purely axiomatic perspective. We have shown
that with a remarkably small extension to the classical reversible programming language Π, one can
obtain a language which is computational universal as well as sound and complete for a variety of
modes of unitary quantum computing. A key feature of our approach (also found in other successful
calculi such as the ZX-calculus) is the treatment of gates as white boxes that can be decomposed
and recomposed during rewriting. This is in contrast to the circuit based approach that treat gates
as black boxes. For example, while a circuit theory will allow one to derive that TT = S, it is
unable to provide justi�cation for this in terms of the de�nitions of S and T. On the other hand, our
approach reduces this equation to the bifunctoriality of ⊕ and the de�nition of S and T. This style
of reasoning is very close to the kind of semi-formal reasoning used to justify matrix equalities
(employed, e.g., in [Bian and Selinger 2022] to justify their relations).

Physically, square roots are a key feature of quantum hardware. To understand this point, we
brie�y delve under the computational abstraction to the level of energy �ow. At that level, the
quantum mechanical description of a system is expressed using a Hamiltonian that is continuous
in time (and assumed here to be time independent). Given a Hamiltonian � and some initial state
|k (0)⟩, the state of the system at a subsequent time C is given by:

|k (C)⟩ = 4−8�C |k (0)⟩

In the circuit model of quantum computing, the quantity 4−8�C denotes a unitary * that is im-
plemented by a gate or collection of gates. Mathematically, it is clearly legitimate to decompose

* = 4−8�C into
√
* ◦

√
* = 4−8�C/2 ·4−8�C/2. This decomposition has a simple operational realisation:

if the application of * requires an energy pulse lasting : units of time, then applying the pulse

for :/2 units implements
√
* [Arute et. al. 2019, VII.F.2]. It turns out that the classical comput-

ing abstraction generally does not allow such decompositions, whereas quantum computing is
distinguished by this feature.
The fact that a function and its square root operate at di�erent time scales suggests evidence

for the widely-believed exponential speedup that distinguishes quantum from classical computing.
Taking this idea further, it is arguably the case that more and more square roots, for example by
providing additional roots of unity, would unlock additional speedup opportunities. We consider a
formal investigation of these connections to be an important direction of future work.

DATA AVAILABILITY STATEMENT

An extended version of this article with full proofs is available at [Carette et al. 2023]. The Agda
implementation can be found at https://github.com/JacquesCarette/SqrtPi.

ACKNOWLEDGEMENTS

We are indebted to the reviewers for their thoughtful and detailed comments. Jacques Carette is
supported by NSERC grant RGPIN-2018-05812. Amr Sabry was supported by US National Science
Foundation grant OMA-1936353.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

https://github.com/JacquesCarette/SqrtPi

19:28 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

REFERENCES

D. Aharonov. 2003. A simple proof that To�oli and Hadamard are quantum universal. (2003). https://doi.org/10.48550/

arXiv.quant-ph/0301040

M. Amy, A. N. Glaudell, and N. J. Ross. 2020. Number-Theoretic Characterizations of Some Restricted Cli�ord+T Circuits.

Quantum 4 (April 2020), 252. https://doi.org/10.22331/q-2020-04-06-252

F. Arute et. al. 2019. Supplementary information for "Quantum supremacy using a programmable superconducting processor".

(2019). https://doi.org/10.48550/arXiv.1910.11333

S. Awodey. 2010. Category Theory. Oxford University Press.

M. Backens and A. Kissinger. 2019. ZH: A complete graphical calculus for quantum computations involving classical

non-linearity. In Quantum Physics and Logic (Electronic Proceedings in Theoretical Computer Science, 287). 23–42. https:

//doi.org/10.4204/EPTCS.287.2

X. Bian and P. Selinger. 2021. Generators and Relations for*= (Z[12 , 8]). In Quantum Physics and Logic (Electronic Proceedings

in Theoretical Computer Science, Vol. 343). 145–164. https://doi.org/10.4204/EPTCS.343.8

X. Bian and P. Selinger. 2022. Generators and Relations for 2-qubit Cli�ord+T operators. In Quantum Physics and Logic

(Electronic Proceedings in Theoretical Computer Science). https://doi.org/10.48550/arXiv.2204.02217

J. Carette, C. Heunen, R. Kaarsgaard, and A. Sabry. 2023. With a Few Square Roots, Quantum Computing is as Easy as Π.

(2023). https://doi.org/10.48550/arXiv.2310.14056 Extended version with full proofs.

J. Carette, R. P. James, and A. Sabry. 2022. Embracing the laws of physics: Three reversible models of computation. Advances

in Computers, Vol. 126. Elsevier, 15–63. https://doi.org/10.1016/bs.adcom.2021.11.009

J. Carette and A. Sabry. 2016. Computing with Semirings and Weak Rig Groupoids. In Programming Languages and Systems,

P. Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 123–148. https://doi.org/10.1007/978-3-662-49498-1_6

V. Choudhury, J. Karwowski, and A. Sabry. 2022. Symmetries in Reversible Programming: From Symmetric Rig Groupoids

to Reversible Programming Languages. Proc. ACM Program. Lang. 6, POPL, Article 6 (1 2022), 32 pages. https:

//doi.org/10.1145/3498667

A. Clément, N. Heurtel, S. Mans�eld, S. Perdrix, and B. Valiron. 2023. A complete equational theory for quantum circuits. In

Logic in Computer Science. https://doi.org/10.48550/arXiv.2206.10577

B. Coecke and R. Duncan. 2011. Interacting quantum observables: categorical algebra and diagrammatics. New Journal of

Physics 13 (2011), 043016. https://doi.org/10.1088/1367-2630/13/4/043016

N. de Beaudrap, A. Kissinger, and J. van de Wetering. 2022. Circuit extraction for ZX-diagrams can be #P-hard. In ICALP.

119:1–119:19. https://doi.org/10.4230/LIPIcs.ICALP.2022.119

R. Duncan and S. Perdrix. 2009. Graph states and the necessity of Euler decomposition. In Computability in Europe (Lecture

Notes in Computer Science, Vol. 5635). Springer, 167–177. https://doi.org/10.1007/978-3-642-03073-4_18

B. Giles and P. Selinger. 2013. Exact synthesis of multiqubit Cli�ord+) circuits. Phys. Rev. A 87 (2013). Issue 3. https:

//doi.org/10.1103/PhysRevA.87.032332

R. Glück, R. Kaarsgaard, and T. Yokoyama. 2019. Reversible programs have reversible semantics. In Formal Methods. FM 2019

International Workshops (Lecture Notes in Computer Science, Vol. 12232). Springer, 413–427. https://doi.org/10.1007/978-3-

030-54997-8_26

D. Gottesman. 1999. The Heisenberg representation of quantum computers. In Proceedings of the XXII International

Colloquium on Group Theoretical Methods in Physics. 32–43. https://doi.org/10.48550/arXiv.quant-ph/9807006

B. Hayes. 1995. The square root of NOT. American Scientist 83 (1995), 304–308. https://www.jstor.org/stable/29775474

C. Heunen and R. Kaarsgaard. 2022. Quantum Information E�ects. Proceedings of the ACM on Programming Languages 6,

POPL (2022), 1–27. https://doi.org/10.1145/3498663

C. Heunen, R. Kaarsgaard, and M. Karvonen. 2018. Reversible e�ects as inverse arrows. In Proceedings of the Thirty-Fourth

Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIV) (Electronic Notes in Theoretical

Computer Science, Vol. 341). Elsevier, 179–199. https://doi.org/10.1016/j.entcs.2018.11.009

C. Heunen and J. Vicary. 2019. Categories for quantum theory. Oxford University Press.

J. Hu and J. Carette. 2021. Formalizing Category Theory in Agda. In Proceedings of the 10th ACM SIGPLAN International

Conference on Certi�ed Programs and Proofs (Virtual, Denmark) (CPP 2021). Association for Computing Machinery, New

York, NY, USA, 327–342. https://doi.org/10.1145/3437992.3439922

R. P. James and A. Sabry. 2012. Information E�ects. In POPL ’12: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of programming languages. ACM, 73–84. https://doi.org/10.1145/2103656.2103667

N. Johnson and D. Yau. 2021. Bimonoidal Categories, �=-Monoidal Categories, and Algebraic -Theory. (2021). https:

//doi.org/10.48550/arXiv.2107.10526

M. L. Laplaza. 1972. Coherence for distributivity. In Coherence in categories (Lecture Notes in Mathematics, 281). Springer,

29–65. https://doi.org/10.1007/BFb0059555

J. P. May. 1977. �∞ Ring Spaces and �∞ Ring Spectra. Springer.

M. A. Nielsen and I. Chuang. 2010. Quantum Computation and Quantum Information. Cambridge University Press.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

https://doi.org/10.48550/arXiv.quant-ph/0301040
https://doi.org/10.48550/arXiv.quant-ph/0301040
https://doi.org/10.22331/q-2020-04-06-252
https://doi.org/10.48550/arXiv.1910.11333
https://doi.org/10.4204/EPTCS.287.2
https://doi.org/10.4204/EPTCS.287.2
https://doi.org/10.4204/EPTCS.343.8
https://doi.org/10.48550/arXiv.2204.02217
https://doi.org/10.48550/arXiv.2310.14056
https://doi.org/10.1016/bs.adcom.2021.11.009
https://doi.org/10.1007/978-3-662-49498-1_6
https://doi.org/10.1145/3498667
https://doi.org/10.1145/3498667
https://doi.org/10.48550/arXiv.2206.10577
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.4230/LIPIcs.ICALP.2022.119
https://doi.org/10.1007/978-3-642-03073-4_18
https://doi.org/10.1103/PhysRevA.87.032332
https://doi.org/10.1103/PhysRevA.87.032332
https://doi.org/10.1007/978-3-030-54997-8_26
https://doi.org/10.1007/978-3-030-54997-8_26
https://doi.org/10.48550/arXiv.quant-ph/9807006
https://www.jstor.org/stable/29775474
https://doi.org/10.1145/3498663
https://doi.org/10.1016/j.entcs.2018.11.009
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/2103656.2103667
https://doi.org/10.48550/arXiv.2107.10526
https://doi.org/10.48550/arXiv.2107.10526
https://doi.org/10.1007/BFb0059555

With a Few Square Roots, �antum Computing Is as Easy as Pi 19:29

T. Satoh, S. Oomura, M. Sugawara, and N. Yamamoto. 2022. Pulse-engineered controlled-V gate and its applications on

superconducting quantum device. IEEE Transactions on Quantum Engineering 3 (2022), 3101610. https://doi.org/10.1109/

TQE.2022.3170008

P. Selinger. 2015. Generators and relations for n-qubit Cli�ord operators. Logical Methods in Computer Science Volume 11,

Issue 2 (June 2015). https://doi.org/10.2168/LMCS-11(2:10)2015

T. Sleator and H. Weinfurter. 1995. Realizable Universal Quantum Logic Gates. Phys. Rev. Lett. 74 (5 1995), 4087–4090. Issue

20. https://doi.org/10.1103/PhysRevLett.74.4087

S. Staton. 2015. Algebraic E�ects, Linearity, and Quantum Programming Languages. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, 395–406. https://doi.org/10.

1145/2676726.2676999

M. K. Thomsen, R. Kaarsgaard, and M. Soeken. 2015. Ricercar: A Language for Describing and Rewriting Reversible Circuits

with Ancillae and Its Permutation Semantics. In Reversible Computation. Springer International Publishing, 200–215.

https://doi.org/10.1007/978-3-319-20860-2_13

T. To�oli. 1980. Reversible computing. In Automata, Languages and Programming, J. de Bakker and J. van Leeuwen (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 632–644. https://doi.org/10.1007/3-540-10003-2_104

N. Yanofsky and M. A. Mannucci. 2008. Quantum Computing for Computer Scientists. Cambridge University Press.

https://doi.org/10.1017/CBO9780511813887

L. Yeh and J. van de Wetering. 2022. Constructing All Qutrit Controlled Cli�ord+T gates in Cli�ord+T. In Reversible

Computation. Springer, 28–50. https://doi.org/10.1007/978-3-031-09005-9_3

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 19. Publication date: January 2024.

https://doi.org/10.1109/TQE.2022.3170008
https://doi.org/10.1109/TQE.2022.3170008
https://doi.org/10.2168/LMCS-11(2:10)2015
https://doi.org/10.1103/PhysRevLett.74.4087
https://doi.org/10.1145/2676726.2676999
https://doi.org/10.1145/2676726.2676999
https://doi.org/10.1007/978-3-319-20860-2_13
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1017/CBO9780511813887
https://doi.org/10.1007/978-3-031-09005-9_3

	Abstract
	1 Introduction
	2 Background
	2.1 Unitary Quantum Computing
	2.2 Rig Categories

	3 Reasoning about Quantum Circuits with Combinators
	3.1 Circuits as Matrices
	3.2 Circuits as Rig Morphisms

	4 A Universal Quantum Language:
	4.1 The Core Language:
	4.2 Classical Completeness
	4.3 Adding Square Roots

	5 Denotational Semantics
	5.1 Postulating Square Roots
	5.2 Representing Quantum Gates

	6 Soundness and Completeness
	6.1 2-qubit Clifford Circuits
	6.2 n-qubit Clifford Circuits
	6.3 2-qubit Clifford+T
	6.4 Unitaries with Entries in Z[12,i]
	6.5 Gaussian Clifford+T Circuits

	7 Circuit Equivalences
	7.1 Decomposing CCX
	7.2 Agda Implementation

	8 Concluding Remarks
	References

