
Symbolic Execution of
Hadamard-To�oli Quantum Circuits

Jacques Carette
Department of Computing and

Software
McMaster University
Hamilton, Canada

care�e@mcmaster.ca

Gerardo Ortiz
Department of Physics
Indiana University
Bloomington, USA
ortizg@iu.edu

Amr Sabry
Department of Computer Science

Indiana University
Bloomington, USA
sabry@iu.edu

Abstract

The simulation of quantum programs by classical comput-
ers is a critical endeavor for several reasons: it provides
proof-of-concept validation of quantum algorithms; it pro-
vides opportunities to experiment with new programming
abstractions suitable for the quantum domain; and most sig-
ni�cantly it is a way to explore the elusive boundary at which
a quantum advantage may materialize. Here, we show that
traditional techniques of symbolic evaluation and partial
evaluation yield surprisingly e�cient classical simulations
for some instances of textbook quantum algorithms that in-
clude the Deutsch, Deutsch-Jozsa, Bernstein-Vazirani, Simon,
Grover, and Shor’s algorithms. The success of traditional
partial evaluation techniques in this domain is due to one
simple insight: the quantum bits used in these algorithms
can be modeled by a symbolic boolean variable while still
keeping track of the correlations due to superposition and
entanglement. More precisely, the system of constraints gen-
erated over the symbolic variables contains all the necessary
quantum correlations and hence the answer to the quantum
algorithms. With a few programming tricks explained in the
paper, quantum circuits with millions of gates can be symbol-
ically executed in seconds. Paradoxically, other circuits with
as few as a dozen gates take exponential time. We re�ect on
the signi�cance of these results in the conclusion.

CCS Concepts: • Theory of computation→ Semantics

and reasoning; Operational semantics; • Computing

methodologies→ Symbolic and algebraic algorithms;
• Applied computing → Physics.

Keywords: quantum computation, partial evaluation, sym-
bolic evaluation, retrodictive quantum computing, algebraic
normal form, boolean circuits, quantum oracles

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PEPM ’23, January 16–17, 2023, Boston, MA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0011-8/23/01.

h�ps://doi.org/10.1145/3571786.3573018

ACM Reference Format:

Jacques Carette, Gerardo Ortiz, and Amr Sabry. 2023. Symbolic

Execution of Hadamard-To�oli Quantum Circuits. In Proceedings of

the 2023 ACM SIGPLAN InternationalWorkshop on Partial Evaluation

and Program Manipulation (PEPM ’23), January 16–17, 2023, Boston,

MA, USA. ACM, New York, NY, USA, 13 pages. h�ps://doi.org/10.

1145/3571786.3573018

1 Introduction

Classical models of computation are widely believed to be
less powerful than quantum ones. Nevertheless, it is of ut-
most importance to establish when, for a given problem, a
classical algorithm is as resource e�cient as its quantum
counterpart. In this paper we address this question from a
new angle, apparently not explored before. We consider tra-
ditional techniques of symbolic and partial evaluation to clas-
sically simulate quantum circuits assembled from Hadamard
and To�oli gates. The latter constitutes a set of quantum
gates that is known to be computationally universal [2].

Using partial evaluation to optimize reversible or quantum
circuits is not itself a novel idea (see, e.g., [5, 31]). What dis-
tinguishes our approach are the following two important ob-
servations. Firstly, since quantum algorithms are reversible,
depending on the problem at hand, one can always take ad-
vantage of “backwards-in-time” execution (known as retrod-
ictive execution [3, 7, 15, 41]). Secondly, since Hadamard is a
purely quantum gate, with no classical counterpart, we need
to eliminate the superposition generated by such a gate and
replace it with a symbolic variable that preserves the relevant
quantum correlations. This turns out to be straightforward
for instances of Hadamard gates used in the �rst stage of
quantum algorithms to introduce a uniform superposition
of all relevant inputs. These two new ideas, while not ex-
pressive enough to model arbitrary quantum computations,
are e�ective for instances of standard examples of quantum
algorithms.
Our approach can be broadly related to other classical

approaches to reason about subsets of quantum circuits, e.g.,
without entanglement [30], or for Cli�ord groups [4, 23], but
with di�erent tradeo�s: we allow arbitrary entanglement at
the cost of sometimes generating exponentially large equa-
tions and we deal with an incomparable set of gates com-
pared to the Cli�ord group.

14

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0001-8993-9804
https://orcid.org/0000-0003-3254-4494
https://orcid.org/0000-0002-1025-7331
https://doi.org/10.1145/3571786.3573018
https://doi.org/10.1145/3571786.3573018
https://doi.org/10.1145/3571786.3573018
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571786.3573018&domain=pdf&date_stamp=2023-01-15

PEPM ’23, January 16–17, 2023, Boston, MA, USA Jacques Care�e, Gerardo Ortiz, and Amr Sabry

Outline. We begin in Sec. 2 with background information
on quantum computing with a focus on the idea of repre-
senting a class of qubit states using symbolic variables. Sec. 3
shows how standard quantum gates can be modeled using
this symbolic representation by using the algebraic normal
form (ANF) of boolean formulae. Sec. 4 reviews the family
of quantum algorithms that is the focus of our approach and
highlights the new perspective brought by symbolic execu-
tion. Our main technical contribution, the design and im-
plementation of a symbolic evaluator for Hadamard-To�oli
quantum circuits, is explained in Sec. 5. The next section
(Sec. 6) includes a complexity analysis and a performance
evaluation of our symbolic evaluator on major textbook algo-
rithms. Sec. 7 concludes with a summary and a discussion of
the broader implications of our approach to the understand-
ing of the classical / quantum performance characteristics.
Our code is available online.1

2 Qubits as Symbolic Variables

The general state of a quantum bit (qubit) is mathematically
modeled using an equation parameterized by two angles \
and q as follows:

cos
\

2
|0⟩ + 48q sin

\

2
|1⟩ .

The description models the fact that the qubit is in a super-
position of false |0⟩ and true |1⟩. The angle \ determines
the relative amplitudes of false and true and the angle q

determines the relative phase between them. A particular
case when \ = c/2 and q = 0 is ubiquitous in quantum al-
gorithms. In those cases, the general representation reduces
to:

1/
√
2 (|0⟩ + |1⟩),

which represents a qubit in an equal superposition of false
and true and with no relative phase between them.

The reason this particular case is distinguished is because
a rather common template for quantum algorithms is to
start with qubits initialized to |0⟩ and immediately apply a
Hadamard � transformation whose action is:

|0⟩ ↦→ 1/
√
2 (|0⟩ + |1⟩) .

This superposition is then further manipulated depending
on the algorithm in question.

Our observation is that a qubit in the special superposition

1/
√
2 (|0⟩ + |1⟩) is, computationally speaking, indistinguish-

able from a symbolic boolean variable with an unknown
value in the same sense used in symbolic evaluation of clas-
sical programs [6, 10, 16, 25, 28]. First, the superposition is
not observable. The only way to observe the qubit is via a
measurement which collapses the state to be either false or
true with equal probability. Second, and more signi�cantly,
this remarkably simple observation is quite robust even in
the presence of multiple, possibly entangled, qubits.

1h�ps://github.com/JacquesCare�e/RetroPECode

|0⟩

|0⟩

�

|0⟩

|0⟩

|0⟩

�

Figure 1. Circuits for constructing Bell and GHZ States

To see this, consider the conventional quantum circuits
for creating the maximally entangled Bell and GHZ states
in Fig. 1. On the left, the circuit generates the Bell state

(1/
√
2) (|00⟩ + |11⟩) as follows. First the state evolves from

|00⟩ to (1/
√
2) (|00⟩+|10⟩). Thenwe apply the cx-gate whose

action is to negate the second qubit when the �rst one is true.
By using the symbol G1 for � |0⟩, the input to the cx-gate is
|G10⟩. A simple case analysis shows that the action of cx-gate
on inputs |G1~1⟩ is |G1 (G1 ⊕ ~1)⟩ where ⊕ is the exclusive-or
boolean operation. In other words, the cx-gate transforms
|G10⟩ to |G1G1⟩. Since any measurement of the Bell state must
produce either 00 or 11, a symbolic state that shares the same
name in two positions accurately represents correlations
of the entangled Bell state. Similarly, for the GHZ circuit
on the right of Fig. 1, the state after the Hadamard gate is
|G100⟩ which evolves to |G1G10⟩ and then to |G1G1G1⟩ again
accurately capturing the entanglement correlations.
Because quantum circuits are reversible, i.e., executable

forwards and backwards, the introduction of symbolic vari-
ables opens a host of new exciting possibilities beyond con-
ventional (classical) symbolic evaluation: for a given quan-
tum circuit any mixture of inputs and outputs can be deemed
symbolic. For example, consider again the Bell circuit in Fig. 2
but with an arbitrary initial value for the second qubit. The
right sub�gure (Fig. 2b) removes the explicit use of� |0⟩ and
replaces the top qubit with another symbolic variable. Be-
cause quantum circuits are reversible, we can, at this point,
“partially evaluate” the circuit under various regimes. For
example, we can set ~1 = 0 and ~2 = 1 and ask about val-
ues of G1 and G2 that would be consistent with this setting.
We can calculate backwards from |G21⟩ as follows. The state
evolves to |G2 (1 ⊕ G2)⟩ which can be reconciled with the ini-
tial conditions yielding the constraints G1 = G2 and 1⊕G2 = 0

whose solutions are G1 = G2 = 1.
Technically, the problem of symbolic evaluation of our

quantum circuits then reduces to a mixture of partial eval-
uation, slicing, and symbolic evaluation. Like with partial
evaluation, we have some inputs dynamic, some static, and
a static program. Similarly for slicing, but with outputs. Our
situation is signi�cantly simpler than in both cases. First, our
language is reversible, which makes backwards evaluation
deterministic, unlike for most languages. Second, the values

15

https://github.com/JacquesCarette/RetroPECode

Symbolic Execution of Hadamard-To�oli �antum Circuits PEPM ’23, January 16–17, 2023, Boston, MA, USA

|0⟩

|~1⟩

� |G2⟩

|~2⟩
(a) Bell circuit

|G1⟩

|~1⟩

|G2⟩

|~2⟩
(b) Symbolic variant

Figure 2. A conventional quantum circuit for generating a Bell state (a); its classical symbolic variant (b)

at each step of circuit execution are boolean functions ma-
nipulated with conditional exclusive-or operations with a
well-understood normal form, ANF, explained next.

3 Algebraic Normal Form (ANF)

The circuits we are interested in can all be expressed in terms
of generalized To�oli gates with = control qubits: 00, · · · , 0=−1
and one target qubit 2 , where the e�ect is to leave all the con-
trol qubits unchanged and send 2 to 2⊕∧8 08 , the exclusive-or
of the target 2 with the conjunction of all the control qubits.
In fact, we generalize this further, so that we can control
either on a qubit or its negation, by using pairs of a control
qubit and a boolean. In other words, our gates are speci-
�ed by a collection (00, 10), · · · , (0=−1, 1=−1) together with
one target qubit 2; their action is to send the target qubit
to 2 ⊕ ∧

8 (08 == 18), the exclusive-or of the target 2 with
the conjunction of the result of testing each qubit against
its corresponding target boolean. Note that (08 == 1) can
be expressed as just 08 , and (08 == 0) can be expressed as
1 ⊕ 08 . Such generalized To�oli gates with = control qubits
are called c

=
x gates. It is worth noting the following special

cases:

• for = = 0, we get the not gate x,
• for = = 1, we get the controlled not gate cx, and
• for = = 2, we get the controlled controlled not or the
conventional To�oli gate ccx.

The algebraic normal form [37, 42] (ANF also called ring
sum normal form, Zhegalkin normal form or Reed-Muller ex-
pansion) of boolean functions is the exclusive-or of∧-clauses
where each clause is the conjunction of 0 or more inputs G8 .
Note that the conjunction of 0 inputs is 1 and that 1 ⊕ � is
the negation of � which means that negation is not needed
as a separate primitive. It is then easy to see that generalized
To�oli gates are essentially in ANF and that symbolic circuit
evaluation can proceed by maintaining the ANF representa-
tion of the circuit. Furthermore, circuits that only use x and
cx-gates never generate any conjunctions and hence lead to
formulae that are e�ciently solvable classically [37, 42].

The ANF of a boolean function is unique. This means that
two di�erent circuits implementing the same function have
the same symbolic ANF representation. As a small example,
Fig. 3 shows an equivalence that is often useful when only
nearest-qubit interactions are available. Fig. 4 shows two
fragments of a circuit used in Shor’s algorithm that each use
one side of the equivalence. We demonstrate, manually, how

theANF symbolic representation of the two circuits is unique,
which explains why a non-optimized circuit with millions of
gates can be e�ciently processed if the underlying function
has an e�cient circuit representation.
Let’s start symbolically evaluating the circuit on the left

of Fig. 4. Replacing � |0⟩ by I for the top wire, the initial
state for the symbolic execution is |I000⟩. The white dot
in the graphical representation of the �rst gate indicates
that the control is active when it is 0. The state proceeds to
|I00(1 ⊕ I)⟩. The second gate then produces |II0(1 ⊕ I)⟩ as
the �nal state. For the circuit on the right, symbolic evalua-
tion proceeds as follows:

|I000⟩ ↦→ |I00(1 ⊕ I)⟩
↦→ |I0I (1 ⊕ I)⟩
↦→ |III (1 ⊕ I)⟩
↦→ |II0(1 ⊕ I)⟩
↦→ |II0(1 ⊕ I)⟩ ,

which is the same ANF representation as the �rst circuit.
To summarize, we never need to residualize a circuit,

we can always get a “closed form,” in ANF, for evaluation,
whether forward or backward. Evaluating a circuit in one
�xed direction is then quite standard. A novel approach, en-
abled by the reversibility of quantum mechanics, is what we
call the retrodictive mode of running circuits, as explained
in our preprint [15] which further details the quantum and
physics side of this work (but does not speak of the implemen-
tation beyond saying that it exists). In that mode, illustrated
in Fig. 5b , we start execution in the forward direction with
a fully static collection of inputs in order to partially deter-
mine a possible future; we then execute backwards from the
partially speci�ed possible future (with the unknown values
represented symbolically). This combination of static and
dynamic knowledge of the output produces as its result a sys-
tem of constraints equating the resulting logical polynomials
to the circuit’s inputs. What we will actually see is that for
many quantum circuits, we can “read o�” the information
we need from the system of constraint themselves, without
needing to actually solve them.

4 Quantum Algorithms

Let [2n] denote the �nite set {0, 1, . . . , (2= − 1)} with ele-
ments generically denoted as G . The integer = > 0 deter-
mines the problem size for all the problems below. In the

16

PEPM ’23, January 16–17, 2023, Boston, MA, USA Jacques Care�e, Gerardo Ortiz, and Amr Sabry

≡

Figure 3. A gate equivalence

I = |0⟩
|0⟩
|0⟩
|0⟩

�

≡
I = |0⟩

|0⟩
|0⟩
|0⟩

�

Figure 4. A circuit equivalence using the gate equivalence in Fig. 3

review below, we adapt the usual presentation of the algo-
rithms [8, 19, 20, 24, 32, 34, 35] to one better suited to our con-
text. In particular, we focus on the heart of the algorithm, the
quantum oracle, which encapsulates the underlying boolean
function of interest. Furthermore, instead of using the for-
ward �ow of execution using exact quantum superpositions,
we express the problem as one asking for particular proper-
ties of the pre-image of the classical function embedded in
the quantum oracle.

Deutsch. The conventional statement of the problem is
to determine if a function 5 : [2] → [2] is constant or
balanced. In this small case, there are just four possible func-
tions; the function is balanced if it is the identity 5 (G) = G ,
or boolean negation 5 (G) = 1 ⊕ G , and is constant other-
wise. Equivalently, we can ask about the pre-image of an
arbitrary boolean value (say false), i.e., the set of inputs that
are mapped to false by the function, and check whether the
pre-image has an even or odd number of elements. If the
cardinality of the pre-image is even, i.e., 0 or 2, the function
must be constant and if it is odd, i.e., it contains just one
element, the function must be balanced.

Deutsch-Jozsa. The problem is a generalization of the
previous one: the question is to determine if a function
5 : [2n] → [2] for some = is constant or balanced. When ex-
pressed as a pre-image computation, the problem reduces to
a query distinguishing the following three situations about
the pre-image of a value in the range of the function: is
the cardinality of the pre-image equal to 0, 2= , or 2=−1? In
the �rst two cases, the function is constant and in the last
case, the pre-image contains half the values in the domain
indicating that the function is balanced.

Bernstein-Vazirani. We are given a function 5 : [2n] →
[2] that hides a secret number B ∈ [2n]. We are promised the
function is de�ned using the binary representations

∑=−1
8 G8

and
∑=−1

8 B8 of G and B , respectively, as follows:

5 (G) =
=−1∑

8=0

B8G8 mod 2 .

The goal is to determine the secret number B .

Expressing the problem as a pre-image computation is
slightly more involved than in the previous two cases. To
determine B , we compute the pre-image of a value in the
range of the function, and then make = queries to this pre-
image. Query 8 asks whether 28 is a member of the pre-image
and the answer determines bit 8 of the secret B . Indeed, by
de�nition, 5 (28) = B8 and hence B8 is 1 i� 2

8 is a member of
the pre-image of 1.

Simon. We are given a 2-1 function 5 : [2n] → [2n] with
the property that there exists an 0 such 5 (G) = 5 (G ⊕ 0)
for all G where ⊕ in this context is bitwise exclusive-or;
the goal is to determine 0 ∈ [2n]. When expressed as a
computation of pre-images, the problem statement becomes
the following. Pick an arbitrary G and compute the pre-image
of 5 (G). It must contain exactly two values one of which is G .
The problem then reduces to �nding the other value in the
pre-image.

Grover. We are given a function 5 : [2n] → [2] such that
there is a unique D ∈ [2n] such that 5 (D) = 1. The problem
is to �nd this D.

Shor. Weare given a periodic function 5 (G) = 0G mod 2
= ,

such that 0 < 2
= with gcd(0, 2=) = 1, and the goal is to de-

termine the period. As a computation over pre-images, the
problem can be recast as follows. For an arbitrary G , compute
the pre-image of 5 (G) and query it to determine the period.

Template for Circuits. All the problems above have so-
lutions using quantum circuits that all �t the template in
Fig. 5. The *5 block, often called the “oracle,” is uniformly
de�ned as:

*5 (|G⟩ |~⟩) = |G⟩ |5 (G) ⊕ ~⟩ , (1)

for all the problems. We also use the Quantum Fourier Trans-
form (QFT) uniformly as the last step in all the circuits al-
though for most circuits, with the notable exception of Shor’s
algorithm, the low precision approximation of QFT (which
is the Hadamard gate) is su�cient [18].

After replacing � |0⟩ by a symbolic variable, the *5 block
ends up being completely classical, albeit performing mixed
mode execution of the circuit. More precisely, it means that

17

Symbolic Execution of Hadamard-To�oli �antum Circuits PEPM ’23, January 16–17, 2023, Boston, MA, USA

|0⟩⊗=

|k ⟩<

�⊗=

ba
rri
er
1

*5

ba
rri
er
2

ba
rri
er
3

QFT

(a) Conventional Flow

|0⟩⊗=

|k ⟩<

�⊗=

ba
rri
er
1

*5

ba
rri
er
2

ba
rri
er
3

QFT

(b) Retrodictive Flow

Figure 5. Template quantum circuit

|G⟩=

|k ⟩<

*5

|G⟩=

|5 (G) ⊕k ⟩<

Figure 6. Circuit Abstraction

in all these algorithms, the top collection of wires (which we
will call the input register) is prepared in a uniform super-
position which can be represented using symbolic variables.
The measurement of the bottom collection of wires (which
we call the output register) after barrier 2 provides partial in-
formation about the future which is, together with the initial
conditions of the output register, su�cient to symbolically
execute the circuit. In each case, instead of the conventional
execution �ow depicted in Fig. 5(a), we �nd a possible mea-
surement outcome F at barrier 2 and perform a symbolic
retrodictive execution with a state |GF⟩ going backwards
to collect the constraints on G that enable us to solve the
problem in question.
In other words, from the perspective of our approach to

symbolic execution, it is possible to disregard the initial
Hadamard gates and the �nal QFT block and it su�ces to
look at circuits that match the template in Fig. 6.

5 Design and Implementation

Our exposition of the design and implementation of our
system will follow the advice of Parnas and Clements [33] on
faking it: a reconstruction of the requirements as we should
have had them if we’d been all-knowing, and a design that
�ts those requirements. The version history in our GitHub
repository can be inspected for anyone who wants to see
our actual path.

As we experimented with the idea of partial evaluation
and symbolic execution of quantum circuits, we ended up
writing a lot of variants of essentially the same code, but
with minor di�erences in representation. From these early
experiments, we could see the major variation points:

• representation of boolean values and boolean functions,
• representation of ANF, and
• representation of circuits.

We also wanted to write out circuits only once, and have
them be valid across these representation changes and be
executable forwards, backwards, and in mixed retrodictive
mode.
With the notable exception of Shor’s algorithm, all the

algorithms we study are expressed in the “black-box model.”
In that model, the circuit implementing the*5 is collapsed
to just one function call. Of course, in any actual use of the
algorithm, this circuit must be implemented and its execution
time must be accounted for. Therefore, we want to—o�ine—
synthesize a circuit from the boolean speci�cation, i.e., for
5 : [2n] → [2m], we wish to generate the circuit for 6 :

[2n+m] → [2n+m] such that for G ∈ [2n] and ~ ∈ [2m], we
have 6(G,~) = (G, 5 (G) ⊕ ~).

This leads us to the following requirements that our code
must ful�ll.

5.1 Requirements

We need to be able to deal with the following variabilities:

1. multiple representations of boolean values,
2. multiple representations of boolean formulae,
3. di�erent evaluation means (directly, symbolically, for-

wards, backwards, retrodictive).

It must also be possible to implement the following:

4. a reusable representation of circuits composed of gen-
eralized To�oli gates,

5. a reusable representation of the inputs, outputs and
ancillae associated to a circuit,

6. a synthesis algorithm for circuits implementing a cer-
tain boolean function,

7. a reusable library of circuits (such as Deutsch, Deutsch-
Jozsa, Bernstein-Vazirani, Simon, Grover, and Shor).

From those, we can make a set of design choices that drive
the eventual solution.
We eventually want some non-functional characteristics

to hold:

8. evaluation of reasonably-sized circuits should be rela-
tively e�cient.

5.2 Design

To meet the �rst requirement, we use �nally tagless [14] to
encode a language of values:

class (Show v, Enum v) => Value v where

zero :: v

18

PEPM ’23, January 16–17, 2023, Boston, MA, USA Jacques Care�e, Gerardo Ortiz, and Amr Sabry

Module Service

Value representation of a language of values (as a typeclass) and some constructors
VarInFormula abstract representation of variables in formulae
Variable variables as locations holding values and their constructors
ModularArith modular arithmetic utilities useful in implementing certain algorithms, like Shor’s
BoolUtils function to interpret a list of booleans as an Integer
GToffoli representation of generalized To�oli gates and some constructors
Circuits representation of circuits (sequences of gates) and of the special “wires” of our circuits
Synthesis synthesis algorithm for circuits with particular properties
ArithCirc creation of arithmetic circuits
EvalZ evaluation of circuits on concrete values
FormAsList representation of formulae as xor-lists of and-lists of literals-as-strings
FormAsMaps representation of formulae as xor-maps of and-maps of literals-as-Int
FormAsBitmaps representation of formulae as xor-maps of bitmaps
SymbEval Symbolic evaluation of circuits
SymbEvalSpecialized Symbolic evaluation of circuits specialized to the representation from FormAsBitmaps

QAlgos generating the circuits themselves
RunQAlgos running the actual circuits
Trace utilities for tracing and debugging

Figure 7. Modules and their services

one :: v

snot :: v -> v

sand :: v -> v -> v

sxor :: v -> v -> v

-- has a default implementation

snand :: [v] -> v -- n-ary and

snand = foldr sand one

which is then implemented 4 times, once for Bool and then
multiple times for di�erent symbolic variations. As a side-
e�ect, this gives us requirement 3 “for free” if we can write
a su�ciently polymorphic evaluator (which we will present
below).
Unlike value representations that can be computed from

context, we want to explicitly choose how to represent vari-
ables in formulae ourselves (part of requirement 2). Thus we
use an explicit record instead of an implicit dictionary:

data VarInFormula f v = FR

{ fromVar :: v -> f

, fromVars :: Int -> v -> [f]

}

Each formula representation may have di�erent variable
representation v and how to insert them into the current
formula representation f, singly or as = formulae.
A generalized To�oli gate can be represented by a list of

value accessors br (short for boolean representation) along
with a list of controls that tell uswhether to use the bit directly
or negated, alongwithwhich valuewill potentially be �ipped.
The implementation of very common gates (negation and
controlled not) are also shown.

data GToffoli br = GToffoli [Bool] [br] br

xop :: br -> GToffoli br

xop = GToffoli [] []

cx :: br -> br -> GToffoli br

cx a = GToffoli [True] [a]

The core of a circuit (requirement 4) is then implemented as
a sequence of these (where Seq is from Data.Sequence).

type OP br = Seq (GToffoli br)

Mainly for e�ciency reasons, we model circuits as manip-
ulating locations holding values rather than directly acting
on values. We use STRefs (aliased to Var) for that purpose.
Putting this together with the circuit template of 4, we get

data Circuit s v = Circuit

{ op :: OP (Var s v)

, xs :: [Var s v]

, ancillaIns :: [Var s v]

, ancillaOuts :: [Var s v]

, ancillaVals :: [v]

}

which lets us achieve requirement 5.
For requirement 6, we implement a straightforward ver-

sion of a well-established algorithm [36]. Our implementa-
tion is language agnostic, in other words it works via the
Value interface, so that the resulting circuits are all of type
OP br for a free representation br. As circuit synthesis is
only done for generating examples, we are not worried about
its e�ciency.

19

Symbolic Execution of Hadamard-To�oli �antum Circuits PEPM ’23, January 16–17, 2023, Boston, MA, USA

The arithmetic circuit generators are also based on text-
book algorithms, and are not optimized in any way, neither
for running time nor for gate count. Neither are the code for
the quantum algorithms. They are, however, representation
polymorphic.
Above, we said we had 3 di�erent symbolic evaluators.

These were not driven by having di�erent levels of precision
but rather by requirement 8, e�ciency. Our �rst evaluator
(FormAsList) uses xor-lists of and-lists of literals (as strings,
i.e., "x0", "x1", . . . in lexicographical order of the wires). ANF
is then easy: and-lists are sorted, and duplicates removed.
Xor-lists are sorted, grouped, even length lists are removed,
and then made unique. This is woefully ine�cient, and was
the clear bottleneck in our pro�les.
A less naïve approach uses a set of bits for representing

literals, an IntSet for and-lists, and a normalized multiset
for xor maps (a normalized multiset is one with only 0 and 1

as multiplicities). We found it more e�cient to use a multi-
set for intermediate computations with xor maps which is
normalized at the end instead of trying to track even/odd
number of occurrences. Only computing Cartesian products
in this representation requires some thought for �nding a
reasonably e�cient algorithm.

While signi�cantly faster, this representation still did not
make our programs su�ciently e�cient. Our �nal represen-
tation uses natural numbers as and-maps where the encoding
of literals is now positional, and xor maps are again multisets
of these “bitmaps.”

As a last optimization, our circuits have a very particular
property: the control wires are not written to, so that they
are all literals. We use this further optimize the evaluation
of single gates, where we eagerly and directly compute the
ANF rather than waiting for later demand.

5.3 Implementation

The �nal code consists of 18modules that implement various
services, see Fig. 7 for a full listing. It consists of only 1449

lines of Haskell text, of which 646 lines are blank, import
or comments, module declaration, so that 809 are “code.”
Testing and printing utilities are not counted in the above.

The code that occupies themost volume is that for running
the examples, as each circuit needs its own setup for the input
and output wires. Next is the implementation of symbolic
representations of formulae in ANF. This is largely because
there are a lot of pieces that need to be de�ned, including
many instances; the algorithmic aspect rarely span more
than 15 lines in total. The code for generating arithmetic
circuits is voluminous as well as largely computational, but
is a re-implementation of known material, as is the synthesis
code.

A few comments on further implementation details. Sharp
readers might have noticed snand as de�ned in class Value
instead of as a polymorphic function outside the class; we
do this to enable its implementation to be overridden. Lastly,

GToffoli’s implementation relies on an unexpressed invari-
ant: that its two lists are of equal length. We really ought to
refactor the code to use a single list of tuples, but this is a
pervasive change that would not bring much bene�t as we
use combinators to build circuits, and these already maintain
that invariant. Similarly for Circuit: the lists ancillaIns,
ancillaOut and ancillaVals should all be of the same
length. That invariant is not checked in our code.

6 Evaluation

We want to evaluate the e�ectiveness of our evaluator by
running it on standard algorithms, as well as its (relative)
e�ciency.
We �rst give interesting aspects of running the six quan-

tum algorithms outlined in Sec. 4, before commenting on
complexity and work�ow.

6.1 Symbolic Execution of the Algorithms

Most of the algorithms end up generating di�erently shaped
constraint systems, and thus each need to be examined on
its own. It is worth noting that all these algorithms are not
known to have fast classical versions except for a few special
cases [1, 13]. We spend more time on the analysis of Shor’s
algorithm, as it is both more important and displays subtle
behavior.

Deutsch and Deutsch-Jozsa. We perform a retrodictive
execution of the*5 block with an output measurement 0, i.e.,
with the state |G=−1 · · · G1G00⟩. The result of the execution is
a symbolic formula A that determines the conditions under
which 5 (G0, · · · , G=−1) = 0. When the function is constant,
the results are 0 = 0 (always) or 1 = 0 (never) regardless
of how large the circuit is. When the function is balanced,
we get a formula that mentions the relevant variables. As
examples, we generated all 12872 functions [26] → [2] that
are valid inputs to the algorithm; the 2 constant functions
and the 12870 balanced functions. The result of the symbolic
execution immediately provides the answer but with the
understanding that the generation of the formulae takes
time depending on the distribution of zeros and ones. For
example, here are the results of three executions for balanced
functions [26] → [2]:

• G0 = 0,
• G0 ⊕ G1 ⊕ G2 ⊕ G3 ⊕ G4 ⊕ G5 = 0, and
• 1⊕G3G5⊕G2G4⊕G1G5⊕G0G3⊕G0G2⊕G3G4G5⊕G2G3G5⊕
G1G3G5⊕G0G3G5⊕G0G1G4⊕G0G1G2⊕G2G3G4G5⊕G1G3G4G5⊕
G1G2G4G5⊕G1G2G3G5⊕G0G3G4G5⊕G0G2G4G5⊕G0G2G3G5⊕
G0G1G4G5⊕G0G1G3G5⊕G0G1G3G4⊕G0G1G2G4⊕G0G1G2G4G5⊕
G0G1G2G3G5 ⊕ G0G1G2G3G4 = 0.

In the �rst case, the function is balanced because it pro-
duces 0 exactly when G0 = 0 which happens half of the time
in all possible inputs; in the second case the output of the
function is the exclusive-or of all the input variables which is
another easy instance of a balanced function. The last case is

20

PEPM ’23, January 16–17, 2023, Boston, MA, USA Jacques Care�e, Gerardo Ortiz, and Amr Sabry

a cryptographically strong balanced function whose output
pattern is balanced but, by design, di�cult to discern [12].

Insight. In these algorithms, we actually do not care about
the exact formula. Indeed, since we are promised that the
function is either constant or balanced, then any formula
that refers to at least one variable must indicate a balanced
function: the outcome of the algorithm can be immediately
decided if the formula is anything other than 0 or 1. Since
the symbolic evaluation executes the *5 block “once,” one
might conclude that it is a “de-quantization” of the algorithm
in the black-box model, producing immediate answers even
in cases when the quantum algorithm generates complicated
entangled patterns during quantum evolution [1]. However, it
is important to remember that our circuits are “white-box”
rather than “black-box” and that the time taken to execute the
circuit is part of the overall complexity of the algorithm. We
defer to Sec. 6.3 for a more detailed discussion of this point
and refer to Komargodski et al. [29] for another perspective
on black-box vs. white-box complexity in the context of
graph algorithms.

Signi�cance. That the details of the equations do not matter
is crucial as the satis�ability of generally boolean equation
is, in general, an NP-complete problem [17, 27, 38]. More di-
rectly, the answer to the algorithm does not require an exact
calculation of the pre-image of the boolean function. Indeed,
based on the conjectured existence of one-way functions
which itself implies P ≠ NP , pre-images calculations are
believed to be computationally intractable in their most gen-
eral setting. What is intriguing is that quantum algorithms
appear to be able to answer certain general queries about
pre-images without explicitly calculating the pre-image.

Bernstein-Vazirani. We show a complete small example.
Let= = 8 and let the secret string be B = 00111010. In this case,
the problem becomes: given a circuit for 5 (G) = G1 ⊕ G3 ⊕
G4⊕G5, determine the secret string. There are naturally many
circuits that realize the function 5 ; in our “white-box” model
the running time of the symbolic execution will depend on
which circuit is given. In the example below, we generate
the simplest circuit: as all equivalent circuit have the same
ANF representation, any other circuit would give the same
symbolic output but potentially taking longer to execute:

retroBernsteinVazirani fr = print $ runST $ do

xs <- newVars (fromVars fr 8 "x")

y <- newVar zero

let op = fromList [cx (xs !! 1) y

, cx (xs !! 3) y

, cx (xs !! 4) y

, cx (xs !! 5) y

]

run Circuit { op = op

, xs = xs

, ancillaIns = [y]

, ancillaOuts = [y]

, ancillaVals = undefined

}

readSTRef y

runRetroBernsteinVazirani :: IO ()

runRetroBernsteinVazirani =

retroBernsteinVazirani FL.formRepr

-- > runRetroBernsteinVazirani

-- x_1 \oplus x_3 \oplus x_4 \oplus x_5

As can be seen, retroBernsteinVazirani is parameterized
by a representation of formulae: it allocates 8 symbolic vari-
ables, initializes the output to zero, generates the circuit, and
runs it. The top level call runRetroBernsteinVazirani just
needs to pick a particular representation of formulae. The
result is the ANF representation of the circuit, from which
the secret string can be read o�: the indices {1, 3, 4, 5} are
the indices at which the secret string is 1.

Insight. Generally, the formulae are guaranteed to be of the
form

∑
8 G8 for some indices 8; the secret string is then the

binary number that has a 1 at those indices.

Simon. The circuit below implements the black box for a
function 5 such that 5 (0) = 5 (3) = 0 and 5 (1) = 5 (2) = 3:

G0 G0

G1 G1

00 00

01 01

We have for all G ∈ [22] that 5 (G) = 5 (G ⊕ 3) where ⊕
is applied bitwise, i.e., the secret value 0 = 3. To extract
this 0 via symbolic execution we proceed as follows. We
�rst pick a random G , say G = 3, �x the initial condition
0 = 0 and run the circuit forward. This execution produces,
in the output register, the value of 5 (G) = 0. We now run a
symbolic retrodictive execution with 0 = 0 at the output site.
That execution produces information on all values of 0 that
are consistent with the observed result. In this case, we get:
00 = G0 ⊕ G1 and 01 = G0 ⊕ G1. Reconciling these equations
with the initial conditions 00 = 01 = 0, we conclude G0 = G1.
In other words, any input G1G0 such that G0 = G1 is consistent
with the observed result. There are two such inputs G = 0 or
G = 3 and the secret 0 is their di�erence.

Insight. Simon’s problem does not seem to have a resolution
that is easy to read from the resulting equations. Generally,
we get equations that have exactly two solutions, one of
which is known. In some cases, like above, it is straightfor-
ward to infer the second solution, but as the equations get
more and more complex, the problem becomes harder.

21

Symbolic Execution of Hadamard-To�oli �antum Circuits PEPM ’23, January 16–17, 2023, Boston, MA, USA

D = 0 1 ⊕ G3 ⊕ G2 ⊕ G1 ⊕ G0 ⊕ G2G3 ⊕ G1G3 ⊕ G1G2 ⊕ G0G3 ⊕ G0G2 ⊕ G0G1 ⊕ G1G2G3 ⊕ G0G2G3
⊕ G0G1G3 ⊕ G0G1G2 ⊕ G0G1G2G3

D = 1 G0 ⊕ G0G3 ⊕ G0G2 ⊕ G0G1 ⊕ G0G2G3 ⊕ G0G1G3 ⊕ G0G1G2 ⊕ G0G1G2G3
D = 2 G1 ⊕ G1G3 ⊕ G1G2 ⊕ G0G1 ⊕ G1G2G3 ⊕ G0G1G3 ⊕ G0G1G2 ⊕ G0G1G2G3
D = 3 G0G1 ⊕ G0G1G3 ⊕ G0G1G2 ⊕ G0G1G2G3
D = 4 G2 ⊕ G2G3 ⊕ G1G2 ⊕ G0G2 ⊕ G1G2G3 ⊕ G0G2G3 ⊕ G0G1G2 ⊕ G0G1G2G3
D = 5 G0G2 ⊕ G0G2G3 ⊕ G0G1G2 ⊕ G0G1G2G3
D = 6 G1G2 ⊕ G1G2G3 ⊕ G0G1G2 ⊕ G0G1G2G3
D = 7 G0G1G2 ⊕ G0G1G2G3
D = 8 G3 ⊕ G2G3 ⊕ G1G3 ⊕ G0G3 ⊕ G1G2G3 ⊕ G0G2G3 ⊕ G0G1G3 ⊕ G0G1G2G3
D = 9 G0G3 ⊕ G0G2G3 ⊕ G0G1G3 ⊕ G0G1G2G3
D = 10 G1G3 ⊕ G1G2G3 ⊕ G0G1G3 ⊕ G0G1G2G3
D = 11 G0G1G3 ⊕ G0G1G2G3
D = 12 G2G3 ⊕ G1G2G3 ⊕ G0G2G3 ⊕ G0G1G2G3
D = 13 G0G2G3 ⊕ G0G1G2G3
D = 14 G1G2G3 ⊕ G0G1G2G3
D = 15 G0G1G2G3

Figure 8. Result of retrodictive execution for the Grover oracle (= = 4,F in the range {0..15}). The highlighted red subformula
is the binary representation of the hidden input D

Grover. A reversible oracle circuit for a function 5 (G) that
returns 1 for a unique inputD and 0 otherwise is rather trivial:
it consists of a single generalized To�oli gate that �ips the
output when the input matches D:

synthesisGrover ::

Int -> [Var s v] -> Integer -> OP s v

synthesisGrover n (viewL -> (xs,y)) u =

S.singleton $ GToffoli (fromInt n u) xs y

The ANF representation of the circuit is sensitive to the
value D as shown in Fig. 8 and the running time of symbolic
execution varies accordingly. What is interesting is that the
shortest subformula in the ANF representation is guaranteed
to be the binary representation of D. As an example, if D = 3,
then G1G0 must be a subformula in the ANF representation.
By itself, this subformula would satisfy not just 3 but also
7, 11, and 15. To exclude this latter values, the ANF repre-
sentation includes the clause G2G1G0 to exclude 7, the clause
G3G1G0 to exclude 11, and the clause G3G2G1G0 to exclude 15.

Insight. For Grover as well, the result can be immediately
read o� the formula.

Shor. The circuit in Fig. 9 uses a hand-optimized imple-
mentation of quantum oracle *5 for the modular exponenti-
ation function 5 (G) = 4

G
mod 15 to factor 15 using Shor’s

algorithm. In a conventional forward execution, the state
before the QFT block is:

1

2
√
2
((|0⟩ + |2⟩ + |4⟩ + |6⟩) |1⟩ + (|1⟩ + |3⟩ + |5⟩ + |7⟩) |4⟩) .

At this point, the output register is measured to be either |1⟩
or |4⟩. In either case, the input register snaps to a state of the

G2 = |0⟩ �

&�)G1 = |0⟩ �

G0 = |0⟩ �

|0⟩

|0⟩

|0⟩

Figure 9. Hand optimized quantum circuit for �nding the
period of 4G mod 15

form
∑

3

A=0 |0 + 2A ⟩ whose QFT has peaks at |0⟩ or |4⟩ mak-
ing them the most likely outcomes of measurements of the
input register. If we measure |0⟩, we repeat the experiment;
otherwise we infer that the period is 2.
In the backwards execution, we can start with the state

|G2G1G0001⟩ since 1 is guaranteed to be a possible output mea-
surement (corresponding to 5 (0)). The �rst cx-gate changes
the state to |G2G1G0G001⟩ and the second cx-gate produces
|G2G1G0G00G0⟩. At that point, we reconcile the retrodictive
result of the output register |G00G0⟩ with the initial condition
|000⟩ to conclude that G0 = 0. In other words, in order to ob-
serve the output at 001, the input register must be initialized
to a superposition of the form |??0⟩ where the least signi�-
cant bit must be 0 and the other two bits are unconstrained.
Expanding the possibilities, the input register needs to be in
a superposition of the states |000⟩ , |010⟩ , |100⟩ or |110⟩ and
we have just inferred using purely classical but retrodictive
reasoning that the period is 2.

22

PEPM ’23, January 16–17, 2023, Boston, MA, USA Jacques Care�e, Gerardo Ortiz, and Amr Sabry

Base Equations Solution

0 = 11 G0 = 0 G0 = 0

0 = 4, 14 1 ⊕ G0 = 1 G0 = 0 G0 = 0

0 = 7, 13 1 ⊕ G1 ⊕ G0G1 = 1 G0G1 = 0 G0 ⊕ G1 ⊕ G0G1 = 0 G0 ⊕ G0G1 = 0 G0 = G1 = 0

0 = 2, 8 1 ⊕ G0 ⊕ G1 ⊕ G0G1 = 1 G0G1 = 0 G1 ⊕ G0G1 = 0 G0 ⊕ G0G1 = 0 G0 = G1 = 0

Figure 10. Equations generated by retrodictive execution of 0G mod 15 for di�erent values of 0, starting from observed
result 1 and unknown G8G7G6G5G4G3G2G1G0. The solution for the unknown variables is given in the last column

|G1⟩
|G0⟩

02 = |0⟩
01 = |0⟩
00 = |0⟩

Figure 11. Quantum circuit for �nding the period of 4G

mod 21 using qutrits. The three gates are from left to right
are the - , SUM, and � (-) gates for ternary arithmetic [9].
The - gate adds 1 modulo 3; the controlled version � (-)
only increments when the control is equal to 2, and the SUM
gates maps |0, 1⟩ to |0, 0 + 1⟩

This result does not, in fact, require the small optimized
circuit of Fig. 9. In our implementation, modular exponen-
tiation circuits are constructed from �rst principles using
adders andmultipliers [40]. In the case of 5 (G) = 4

G
mod 15,

although the unoptimized constructed circuit has 56,538 gen-
eralized To�oli gates, the execution results in just two simple
equations: G0 = 0 and 1 ⊕ G0 = 1. Furthermore, as shown in
Fig. 10, the shape and size of the equations is largely insensi-
tive to the choice of 4 as the base of the exponent, leading
in all cases to the immediate conclusion that the period is
either 2 or 4. When the solution is G0 = 0, the period is 2,
and when it is G0 = G1 = 0, the period is 4.

The remarkable e�ectiveness of retrodictive computation
of the Shor instance for factoring 15 is due to a coincidence:
a period that is a power of 2 is clearly trivial to represent in
the binary number system which, after all is expressly de-
signed for that purpose. That coincidence repeats itself when
factoring products of the (known) Fermat primes: 3, 5, 17,
257, and 65537, and leads to small circuits [22]. This is con-
�rmed with our implementation which smoothly deals with
unoptimized circuits for factoring such products. Factoring
3*17=51 using the unoptimized circuit of 177,450 generalized
To�oli gates produces just the 4 equations: 1⊕ G1 = 1, G0 = 0,
G0 ⊕ G0G1 = 0, and G1 ⊕ G0G1 = 0. Even for 3*65537=196611
whose circuit has 4,328,778 generalized To�oli gates, the ex-
ecution produces 16 small equations that refer to just the
four variables G0, G1, G2, and G3 constraining them to be all 0,
i.e., asserting that the period is 16.

Since periods that are powers of 2 are rare and special, we
turn our attention to factoring problems with other periods.

The simplest such problem is that of factoring 21 with an
underlying function 5 (G) = 4

G
mod 21 of period 3. The

unoptimized circuit constructed from the �rst principles
has 78,600 generalized To�oli gates; its execution generates
just three equations. But even in this rather trivial situation,
the equations span 5 pages of text! A small optimization
reducing the number of qubits results in a circuit of 15,624
generalized To�oli gates whose execution produces still quite
large, but more reasonable, equations. To understand the
reason for these unwieldy equations, we examine a general
ANF formula of the form-1⊕-2⊕-3⊕ . . . = 0where each-8

is a conjunction of some boolean variables, i.e., the variables
in each - exhibit constructive interference as they must all
be true to enable that - = 1. Since the entire formula must
equal to 0, every -8 = 1 must be o�set by another - 9 =

1, thus exhibiting negative interference among -8 and - 9 .
Generally speaking, arbitrary interference patterns can be
encoded in the formulae at the cost of making the size of
the formulae exponential in the number of variables. This
exponential blowup is actually a necessary condition for any
quantum algorithm that can o�er an exponential speed-up
over classical computation [26].
It would however be incorrect to conclude that factor-

ing 21 is inherently harder than factoring 15. The issue is
simply that the binary number system is well-tuned to ex-
pressing patterns over powers of 2 but a very poor match
for expressing patterns over powers of 3. Indeed, we show
that by just using qutrits, the circuit and equations for fac-
toring 21 become trivial while those for factoring 15 become
unwieldy. The manually optimized circuit in Fig. 11 consists
of just three gates; its retrodictive execution produces two
equations: G0 = 0 and G0 ≠ 2, setting G0 = 0 and leaving G1
unconstrained. The matching values in the qutrit system are
00, 10, 20 or in decimal 0, 3, 6 clearly identifying the period
to be 3.

6.2 Time Measurements

We show a few representative set of timings for the Deutsch-
Jozsa and Grover problems.
Fig. 12 shows what happens when we vary the size of

the problem for Deutsch-Josza on three di�erent balanced
functions of = variables G0, · · · , G=−1: one that returns G0, one
that returns G=−1, and one that returns G0 ⊕ · · · ⊕ G=−1. All

23

Symbolic Execution of Hadamard-To�oli �antum Circuits PEPM ’23, January 16–17, 2023, Boston, MA, USA

9 10 11 12 13 14 15 16

0.01

0.10

1

10

100

<latexit sha1_base64="KwuSKC89B6/88I5d5So4kaR9nkk=">AAACCHicbVC7SgNBFJ2NrxhfUUsLB4NgFXYlqGUwjWUE84AkhNnJ3WTIPJaZWTEsKW38FRsLRWz9BDv/xsmj0MQDFw7n3Mu994QxZ8b6/reXWVldW9/Ibua2tnd29/L7B3WjEk2hRhVXuhkSA5xJqFlmOTRjDUSEHBrhsDLxG/egDVPyzo5i6AjSlyxilFgndfPHbRGqh1zaNhGuVGvYMgGYSWyAKtkz426+4Bf9KfAyCeakgOaodvNf7Z6iiQBpKSfGtAI/tp2UaMsoh3GunRiICR2SPrQclUSA6aTTR8b41Ck9HCntSlo8VX9PpEQYMxKh6xTEDsyiNxH/81qJja46KZNxYkHS2aIo4dgqPEkF95gGavnIEUI1c7diOiCaUOuyy7kQgsWXl0n9vBhcFEu3pUL5eh5HFh2hE3SGAnSJyugGVVENUfSIntErevOevBfv3fuYtWa8+cwh+gPv8weMSJkQ</latexit> C
P
U

ti
m
e
in

s
e
c
o
n
d
s

<latexit sha1_base64="kuvqsFNbjEvULVMnkk4XIG+iKgw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuyXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH2f+M+w==</latexit>

n

<latexit sha1_base64="qN14GZytDNjBujvpvLHlt5zResw=">AAACCHicbVC7TsMwFHV4lvIKMDJgUSGxUCWoAsYKFsYi0YfURJHjOK1Vx45sB7WKOrLwKywMIMTKJ7DxN7htBmg5kuXjc+7V9T1hyqjSjvNtLS2vrK6tlzbKm1vbO7v23n5LiUxi0sSCCdkJkSKMctLUVDPSSSVBSchIOxzcTPz2A5GKCn6vRynxE9TjNKYYaSMF9tEwcDyRskxBD0dCm2v2GgY5P3PHgV1xqs4UcJG4BamAAo3A/vIigbOEcI0ZUqrrOqn2cyQ1xYyMy16mSIrwAPVI11COEqL8fLrIGJ4YJYKxkOZwDafq744cJUqNktBUJkj31bw3Ef/zupmOr/yc8jTThOPZoDhjUAs4SQVGVBKs2cgQhCU1f4W4jyTC2mRXNiG48ysvktZ51b2o1u5qlfp1EUcJHIJjcApccAnq4BY0QBNg8AiewSt4s56sF+vd+piVLllFzwH4A+vzB0f/mYM=</latexit>

x0 ⊕ · · ·⊕ xn−1

<latexit sha1_base64="CrLcgGPFPZRKE07vcCRVoa88e2k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP7ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcNGo2o</latexit>

x0

<latexit sha1_base64="YWF+LKvdqR2PXJa7AcaPKgPkANg=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4sSRS1GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9ci1EbF6wHHC/YgOlAgFo2il1lMvU+fepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmleVLzLSvW+Wq7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx8MYI9k</latexit>

xn−1

Figure 12. Execution times for the retrodictive execution
of the Deutsch-Jozsa algorithm on 3 balanced functions at
di�erent sizes

<latexit sha1_base64="KwuSKC89B6/88I5d5So4kaR9nkk=">AAACCHicbVC7SgNBFJ2NrxhfUUsLB4NgFXYlqGUwjWUE84AkhNnJ3WTIPJaZWTEsKW38FRsLRWz9BDv/xsmj0MQDFw7n3Mu994QxZ8b6/reXWVldW9/Ibua2tnd29/L7B3WjEk2hRhVXuhkSA5xJqFlmOTRjDUSEHBrhsDLxG/egDVPyzo5i6AjSlyxilFgndfPHbRGqh1zaNhGuVGvYMgGYSWyAKtkz426+4Bf9KfAyCeakgOaodvNf7Z6iiQBpKSfGtAI/tp2UaMsoh3GunRiICR2SPrQclUSA6aTTR8b41Ck9HCntSlo8VX9PpEQYMxKh6xTEDsyiNxH/81qJja46KZNxYkHS2aIo4dgqPEkF95gGavnIEUI1c7diOiCaUOuyy7kQgsWXl0n9vBhcFEu3pUL5eh5HFh2hE3SGAnSJyugGVVENUfSIntErevOevBfv3fuYtWa8+cwh+gPv8weMSJkQ</latexit> C
P
U

ti
m
e
in

s
e
c
o
n
d
s

0 5.0 ×10
7
1.0 ×10

8
1.5 ×10

8
2.0 ×10

8
2.5 ×10

8
3.0 ×10

8

0

100

200

300

400

<latexit sha1_base64="4GYdTEnrkJZwl8S7NfSVmoPGujw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWjzhOuB/RgRKhYBSt9JBeu71yxa26M5Bl4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9mp07IiVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo36QvNGcqxJZRpYW8lbEg1ZWjTKdkQvMWXl0nzrOpdVM/vzyu1mzyOIhzBMZyCB5dQgzuoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/gfP4A1M+Ngw==</latexit>

u = 0
<latexit sha1_base64="+aRpXpQ0v2ogGDCZE3TvTAgV0Eg=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4qru1qBeh6MVjBfsh7VqyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut7O0vLK6tp7byG9ube/sFvb2GzpKFKF1EvFItQKsKWeS1g0znLZiRbEIOG0Gw5uJ33yiSrNI3ptRTH2B+5KFjGBjpYfkqvyYytOzcbdQdEvuFGiReBkpQoZat/DV6UUkEVQawrHWbc+NjZ9iZRjhdJzvJJrGmAxxn7YtlVhQ7afTg8fo2Co9FEbKljRoqv6eSLHQeiQC2ymwGeh5byL+57UTE176KZNxYqgks0VhwpGJ0OR71GOKEsNHlmCimL0VkQFWmBibUd6G4M2/vEga5ZJ3XqrcVYrV6yyOHBzCEZyABxdQhVuoQR0ICHiGV3hzlPPivDsfs9YlJ5s5gD9wPn8AAj2P5w==</latexit>

u = 2
n/3

<latexit sha1_base64="QZOL1kJLtVM2j8fq7oY6BL5VH4k=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBi2W3FPUiFL14rGA/pF1LNs22oUl2SbJCWforvHhQxKs/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKmjRBHaIBGPVDvAmnImacMww2k7VhSLgNNWMLqZ+q0nqjSL5L0Zx9QXeCBZyAg2VnpIriqPqZyceb1iyS27M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpVsreebl6Vy3VrrM48nAEx3AKHlxADW6hDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4A/LSP4w==</latexit>

u = 2
n

− 1

<latexit sha1_base64="kjdB99NTGgMYeT+t2uDs003NoMs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqBeh6MVjBfsBbSib7aZdursJuxuhhP4FLx4U8eof8ua/cZPmoK0PBh7vzTAzL4g508Z1v53S2vrG5lZ5u7Kzu7d/UD086ugoUYS2ScQj1QuwppxJ2jbMcNqLFcUi4LQbTO8yv/tElWaRfDSzmPoCjyULGcEmk5Ibzx1Wa27dzYFWiVeQGhRoDatfg1FEEkGlIRxr3ffc2PgpVoYRTueVQaJpjMkUj2nfUokF1X6a3zpHZ1YZoTBStqRBufp7IsVC65kIbKfAZqKXvUz8z+snJrz2UybjxFBJFovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT8WG4C2/vEo6F3Xvst54aNSat0UcZTiBUzgHD66gCffQgjYQmMAzvMKbI5wX5935WLSWnGLmGP7A+fwBRO2Nvg==</latexit>

u = 10

<latexit sha1_base64="8ceCHJNULD0d9q+lxfBs88j58Kc=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSJ4KrulqBeh6MWTVHDbQruWbJptQ5PskmSFsvQ3ePGgiFd/kDf/jWm7B219MPB4b4aZeWHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0WoT2Ieq3aINeVMUt8ww2k7URSLkNNWOLqZ+q0nqjSL5YMZJzQQeCBZxAg2VvLvrqqPslcquxV3BrRMvJyUIUejV/rq9mOSCioN4VjrjucmJsiwMoxwOil2U00TTEZ4QDuWSiyoDrLZsRN0apU+imJlSxo0U39PZFhoPRah7RTYDPWiNxX/8zqpiS6DjMkkNVSS+aIo5cjEaPo56jNFieFjSzBRzN6KyBArTIzNp2hD8BZfXibNasU7r9Tua+X6dR5HAY7hBM7Agwuowy00wAcCDJ7hFd4c6bw4787HvHXFyWeO4A+czx8dZY4+</latexit>

N = 2
n

Figure 13. Execution times for the retrodictive execution
of the Grover algorithm on di�erent “secret” values D at
di�erent sizes

<latexit sha1_base64="KwuSKC89B6/88I5d5So4kaR9nkk=">AAACCHicbVC7SgNBFJ2NrxhfUUsLB4NgFXYlqGUwjWUE84AkhNnJ3WTIPJaZWTEsKW38FRsLRWz9BDv/xsmj0MQDFw7n3Mu994QxZ8b6/reXWVldW9/Ibua2tnd29/L7B3WjEk2hRhVXuhkSA5xJqFlmOTRjDUSEHBrhsDLxG/egDVPyzo5i6AjSlyxilFgndfPHbRGqh1zaNhGuVGvYMgGYSWyAKtkz426+4Bf9KfAyCeakgOaodvNf7Z6iiQBpKSfGtAI/tp2UaMsoh3GunRiICR2SPrQclUSA6aTTR8b41Ck9HCntSlo8VX9PpEQYMxKh6xTEDsyiNxH/81qJja46KZNxYkHS2aIo4dgqPEkF95gGavnIEUI1c7diOiCaUOuyy7kQgsWXl0n9vBhcFEu3pUL5eh5HFh2hE3SGAnSJyugGVVENUfSIntErevOevBfv3fuYtWa8+cwh+gPv8weMSJkQ</latexit> C
P
U

ti
m
e
in

s
e
c
o
n
d
s

<latexit sha1_base64="kuvqsFNbjEvULVMnkk4XIG+iKgw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuyXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH2f+M+w==</latexit>

n

FormAsList

FormAsMaps

FormAsBitMaps

9.5 10.0 10.5 11.0 11.5 12.0 12.5
0

5

10

15

20

25

Figure 14. Execution times for the retrodictive execution
of the Grover algorithm on secret value D = 0 at two sizes
but using di�erent ANF representations

three examples show clear exponential behavior that does
not depend on the size of the �nal answer. We show the
timings only for a single implementation of the representa-
tion of formulae as, somewhat mysteriously, this makes no
di�erence in this case, we get essentially the same result in
all cases.
Fig. 13 shows timings of di�erent calls to Grover’s algo-

rithm, using the best representation for formulae (as bitmaps)
but varying what “secret value D” we are looking for. Here
the binary representation of D matters greatly, ranging from
what looks like essentially constant time to exponential time.

Lastly, Fig. 14 shows Grover’s algorithm again, using the
worst case value from the previous �gure (D = 0) but varying
the representation at two sizes. Here we can clearly see the
very strong e�ect that this has on the timings. This is not just
a constant improvement, it is also a complexity improvement.

6.3 Complexity

In the general case, we have a circuit containing) general-
ized To�oli gates over = +< qubits split in two registers �
(= qubits) and � (m qubits). The typical symbolic execution
takes the following steps with the given worst-case complex-
ity:

1. If the quantum algorithm is expressed in terms of calls
to a black-box oracle (all the problems we consider
except Shor), then the �rst step is to design the oracle
e�ciently. Perhaps surprisingly, it turns out we don’t
have to be particularly clever in designing that circuit:
textbook designs with million of gates can work well.

2. Let � = |00 . . . 0⟩ and � = |00 . . . 0⟩ and run the circuit
with classical inputs. This has complexity O()) as it
takes) steps where each step takes constant time. The
result of this evaluation will leave� intact and produce
some value 1 for the � register.

3. We now run the circuit backwards with the symbolic
values � = |G=−1 . . . G1G0⟩ and � = |1⟩. This takes)
steps. At each step, we have < ANF equations over
the {G0, G1, . . . , G=−1} variables. The size of each equa-
tion might be O(2=) in the worst case. So the overall
complexity of this step is O()<2

=).
4. The answer to the algorithm is obtained by either in-

specting or, in the worst case, solving the resulting<
equations. In the Deutsch-Jozsa and Grover algorithms,
the solution is immediate by inspection of the equa-
tions.

There are two potential bottlenecks: steps (3) above which
has a worst-case complexity of O()<2

=), and step (4) in the
solve case, which is an NP-complete problem. The O()) fac-
tor is inevitable because we have a white box implementation
of the oracle and we must touch every gate in that imple-
mentation. The O(<) factor is also inevitable as it represents
the number of variables. What varies from one function to

24

PEPM ’23, January 16–17, 2023, Boston, MA, USA Jacques Care�e, Gerardo Ortiz, and Amr Sabry

the other and, for a particular function, from one oracle
implementation to the other is the O(2=) factor.

What our examples show is that while the worst-case for
some algorithms is O(2=), it seems that the expected case
actually depends on the length of the encoding (in binary)
of the information contained in the answer, especially in the
case where we do not need to solve the constraints.

6.4 Work�ow

While we would like to be able to o�er a uniform work-
�ow, our case studies do not seem to reveal one: how to
“read” the resulting system of equations to obtain an answer
seems very algorithm-dependent. The fact that all the quan-
tum algorithms uniformly use the QFT (or its Hadamard
approximation) to extract the relevant properties of interest
recon�rms the crucial but mysterious role of the QFT in
quantum computing [11, 21, 39, 43].

7 Conclusion

Symbolic execution is a way of evaluating a given program
abstractly, so that the abstraction represents multiple inputs
sharing an evolution path through the program, with solu-
tions encoded in equations or constraints. So far, this way of
execution has been limited to the classical realm. In this work,
we extended these ideas to the quantum realm by consider-
ing the computational quantum universality of Hadamard
and To�oli gates. The proposed replacement of � |0⟩ by |I⟩,
where I is a symbol, provides the key to capturing some of
the entanglement (non-local correlations) present in those
programs; however, the execution is classical. Surprisingly,
in many well-known quantum algorithms (such as Deutsch,
Deutsch-Jozsa, Bernstein-Vazirani, Simon, Grover) these cor-
relations are su�cient to obtain the solution e�ciently for
some inputs with a plain classical symbolic execution as op-
posed to a purely quantum execution (involving states that
belong to a complex vector space endowed with an inner
product). This raises many questions, in particular, founda-
tional ones regarding the origin of the power of quantum
computation.

References
[1] Alastair A. Abbott. 2012. The Deutsch-Jozsa problem: de-quantization

and entanglement. Natural Computing 11 (2012).

[2] D. Aharonov. 2003. A simple proof that To�oli and Hadamard are

qauntum universal. arXiv:quant-ph/0301040 (2003).

[3] Yakir Aharonov and Lev Vaidman. 2008. The Two-State Vector Formal-

ism: An Updated Review. Springer Berlin Heidelberg, Berlin, Heidelberg,

399–447. h�ps://doi.org/10.1007/978-3-540-73473-4_13

[4] Matthew Amy. 2018. Towards Large-scale Functional Veri�cation of

Universal Quantum Circuits. In Proceedings 15th International Confer-

ence on Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3-7th

June 2018 (EPTCS, Vol. 287), Peter Selinger and Giulio Chiribella (Eds.).

1–21. h�ps://doi.org/10.4204/EPTCS.287.1

[5] Matthew Amy, Martin Roetteler, and Krysta M. Svore. 2017. Veri�ed

Compilation of Space-E�cient Reversible Circuits. In Computer Aided

Veri�cation, Rupak Majumdar and Viktor Kunčak (Eds.). Springer In-

ternational Publishing, Cham, 3–21.

[6] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-

trescu, and Irene Finocchi. 2018. A Survey of Symbolic Execution

Techniques. ACM Comput. Surv. 51, 3, Article 50 (may 2018), 39 pages.

h�ps://doi.org/10.1145/3182657

[7] Stephen M. Barnett, John Je�ers, and David T. Pegg. 2021. Quantum

Retrodiction: Foundations and Controversies. Symmetry 13, 4 (2021).

h�ps://doi.org/10.3390/sym13040586

[8] Ethan Bernstein and Umesh Vazirani. 1997. Quantum Complexity The-

ory. SIAM J. Comput. 26, 5 (1997), 1411–1473. h�ps://doi.org/10.1137/

S0097539796300921 arXiv:https://doi.org/10.1137/S0097539796300921

[9] Alex Bocharov, Shawn X. Cui, Martin Roetteler, and Krysta M. Svore.

2016. Improved Quantum Ternary Arithmetic. Quantum Info. Comput.

16, 9–10 (jul 2016), 862–884.

[10] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 1975. SELECT—a

Formal System for Testing and Debugging Programs by Symbolic

Execution. SIGPLAN Not. 10, 6 (apr 1975), 234–245. h�ps://doi.org/10.

1145/390016.808445

[11] Daniel E Browne. 2007. E�cient classical simulation of the quantum

Fourier transform. New Journal of Physics 9, 5 (may 2007), 146. h�ps:

//doi.org/10.1088/1367-2630/9/5/146

[12] Linda Burnett, William Millan, Edward Dawson, and Andrew Clark.

2004. Simpler Methods for Generating Better Boolean Functions with

Good Cryptographic Properties. Australasian Journal of Combinatorics

29 (2004), 231–247. h�ps://eprints.qut.edu.au/21763/

[13] Cristian S. Calude. 2007. De-quantizing the solution of Deutsch’s

problem. International Journal of Quantum Information 5, 3 (2007),

409–415.

[14] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally

tagless, partially evaluated: Tagless staged interpreters for simpler

typed languages. Journal of Functional Programming 19, 5 (2009),

509–543.

[15] Jacques Carette, Gerardo Ortiz, and Amr Sabry. 2022. Retrodictive

Quantum Computing. arXiv:2205.06346 (2022).

[16] Lori A. Clarke. 1976. A Program Testing System. In Proceedings of the

1976 Annual Conference (Houston, Texas, USA) (ACM ’76). Association

for Computing Machinery, New York, NY, USA, 488–491. h�ps://doi.

org/10.1145/800191.805647

[17] Stephen A. Cook. 1971. The Complexity of Theorem-Proving Pro-

cedures. In Proceedings of the Third Annual ACM Symposium on

Theory of Computing (Shaker Heights, Ohio, USA) (STOC ’71). As-

sociation for Computing Machinery, New York, NY, USA, 151–158.

h�ps://doi.org/10.1145/800157.805047

[18] D. Coppersmith. 2002. An approximate Fourier transform useful in

quantum factoring. (2002). arXiv:quant-ph/0201067.

[19] David Deutsch. 1985. Quantum theory, the Church–Turing principle

and the universal quantum computer. Proc. R. Soc. Lond. A 400 (1985).

[20] David Deutsch and Richard Jozsa. 1992. Rapid solution of problems

by quantum computation. Proc. R. Soc. Lond. A 439 (1992).

[21] Johann Makowsky Dorit Aharonov, Zeph Landau. 2006. The quantum

FFT can be classically simulated. (2006). arXiv:quant-ph/0611156.

[22] Michael R. Geller and Zhongyuan Zhou. 2013. Factoring 51 and 85

with 8 qubits. Scienti�c Reports (3023) 3, 1 (2013).

[23] D Gottesman. 1998. The Heisenberg representation of quantum com-

puters. (6 1998). h�ps://www.osti.gov/biblio/319738

[24] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for

Database Search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA)

(STOC ’96). Association for ComputingMachinery, New York, NY, USA,

212–219. h�ps://doi.org/10.1145/237814.237866

[25] William E. Howden. 1976. Experiments with a symbolic evaluation

system. In Proceedings of the National Computer Conference.

25

https://doi.org/10.1007/978-3-540-73473-4_13
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.1145/3182657
https://doi.org/10.3390/sym13040586
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://arxiv.org/abs/https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1145/390016.808445
https://doi.org/10.1145/390016.808445
https://doi.org/10.1088/1367-2630/9/5/146
https://doi.org/10.1088/1367-2630/9/5/146
https://eprints.qut.edu.au/21763/
https://doi.org/10.1145/800191.805647
https://doi.org/10.1145/800191.805647
https://doi.org/10.1145/800157.805047
arXiv:quant-ph/0201067
arXiv:quant-ph/0611156
https://www.osti.gov/biblio/319738
https://doi.org/10.1145/237814.237866

Symbolic Execution of Hadamard-To�oli �antum Circuits PEPM ’23, January 16–17, 2023, Boston, MA, USA

[26] Richard Jozsa and Noah Linden. 2003. On the Role of Entanglement

in Quantum-Computational Speed-Up. Proceedings: Mathematical,

Physical and Engineering Sciences 459, 2036 (2003), 2011–2032. h�p:

//www.jstor.org/stable/3560059

[27] Richard M. Karp. 1972. Reducibility among Combinatorial Problems.

Springer US, Boston, MA, 85–103. h�ps://doi.org/10.1007/978-1-4684-

2001-2_9

[28] James C. King. 1976. Symbolic Execution and Program Testing. Com-

mun. ACM 19, 7 (jul 1976), 385–394. h�ps://doi.org/10.1145/360248.

360252

[29] Ilan Komargodski, Moni Naor, and Eylon Yogev. 2019. White-Box

vs. Black-Box Complexity of Search Problems: Ramsey and Graph

Property Testing. J. ACM 66, 5, Article 34 (jul 2019), 28 pages. h�ps:

//doi.org/10.1145/3341106

[30] Liyi Li, Finn Voichick, Kesha Hietala, Yuxiang Peng, Xiaodi Wu, and

Michael Hicks. 2022. Veri�ed Compilation of Quantum Oracles. Proc.

ACM Program. Lang. 6, OOPSLA2, Article 146 (oct 2022), 27 pages.

h�ps://doi.org/10.1145/3563309

[31] Torben Ægidius Mogensen. 2011. Partial Evaluation of the Reversible

Language Janus. In Proceedings of the 20th ACM SIGPLAN Workshop

on Partial Evaluation and Program Manipulation (Austin, Texas, USA)

(PEPM ’11). Association for Computing Machinery, New York, NY,

USA, 23–32. h�ps://doi.org/10.1145/1929501.1929506

[32] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computa-

tion and Quantum Information: 10th Anniversary Edition. Cambridge

University Press. h�ps://doi.org/10.1017/CBO9780511976667

[33] David Lorge Parnas and Paul C Clements. 1986. A rational design pro-

cess: How and why to fake it. IEEE transactions on software engineering

2 (1986), 251–257.

[34] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime

Factorization and Discrete Logarithms on a Quantum Computer.

SIAM J. Comput. 26, 5 (1997), 1484–1509. h�ps://doi.org/10.1137/

S0097539795293172 arXiv:https://doi.org/10.1137/S0097539795293172

[35] D.R. Simon. 1994. On the power of quantum computation. In Pro-

ceedings 35th Annual Symposium on Foundations of Computer Science.

116–123. h�ps://doi.org/10.1109/SFCS.1994.365701

[36] Mathias Soeken, Gerhard W Dueck, and D Michael Miller. 2016. A fast

symbolic transformation based algorithm for reversible logic synthesis.

In International Conference on Reversible Computation. Springer, 307–

321.

[37] Natalia Tokareva. 2015. Chapter 1 - Boolean Functions. In Bent Func-

tions, Natalia Tokareva (Ed.). Academic Press, Boston, 1–15. h�ps:

//doi.org/10.1016/B978-0-12-802318-1.00001-7

[38] B.A. Trakhtenbrot. 1984. A Survey of Russian Approaches to Perebor

(Brute-Force Searches) Algorithms. Annals of the History of Computing

6, 4 (1984), 384–400. h�ps://doi.org/10.1109/MAHC.1984.10036

[39] Maarten Van Den Nest. 2013. E�cient Classical Simulations of Quan-

tum Fourier Transforms and Normalizer Circuits over Abelian Groups.

Quantum Info. Comput. 13, 11–12 (nov 2013), 1007–1037.

[40] Vlatko Vedral, Adriano Barenco, and Artur Ekert. 1996. Quantum

networks for elementary arithmetic operations. Phys. Rev. A 54 (Jul

1996), 147–153. Issue 1. h�ps://doi.org/10.1103/PhysRevA.54.147

[41] Satosi Watanabe. 1955. Symmetry of Physical Laws. Part III. Prediction

and Retrodiction. Rev. Mod. Phys. 27 (Apr 1955), 179–186. Issue 2.

h�ps://doi.org/10.1103/RevModPhys.27.179

[42] Ingo Wegener. 1987. The Complexity of Boolean Functions. John Wiley

& Sons, Inc., USA.

[43] Nadav Yoran and Anthony J. Short. 2007. E�cient classical simulation

of the approximate quantum Fourier transform. Phys. Rev. A 76 (Oct

2007), 042321. Issue 4. h�ps://doi.org/10.1103/PhysRevA.76.042321

Received 2022-10-18; accepted 2022-11-15

26

http://www.jstor.org/stable/3560059
http://www.jstor.org/stable/3560059
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3341106
https://doi.org/10.1145/3341106
https://doi.org/10.1145/3563309
https://doi.org/10.1145/1929501.1929506
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1016/B978-0-12-802318-1.00001-7
https://doi.org/10.1016/B978-0-12-802318-1.00001-7
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/RevModPhys.27.179
https://doi.org/10.1103/PhysRevA.76.042321

	Abstract
	1 Introduction
	2 Qubits as Symbolic Variables
	3 Algebraic Normal Form (ANF)
	4 Quantum Algorithms
	5 Design and Implementation
	5.1 Requirements
	5.2 Design
	5.3 Implementation

	6 Evaluation
	6.1 Symbolic Execution of the Algorithms
	6.2 Time Measurements
	6.3 Complexity
	6.4 Workflow

	7 Conclusion
	References

